Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-08T22:27:57.028Z Has data issue: false hasContentIssue false

Gas Phase and Surface Kinetic Processes in Hot-Wire Chemical Vapor Deposition

Published online by Cambridge University Press:  17 March 2011

J. K. Holt
Affiliation:
Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, CA 91125, U.S.A.
M. Swiatek
Affiliation:
Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, CA 91125, U.S.A.
D. G. Goodwin
Affiliation:
Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, CA 91125, U.S.A.
Harry A. Atwater
Affiliation:
Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, CA 91125, U.S.A.
Get access

Abstract

One- and two-dimensional numerical simulations have been used to determine the parameters critical to high rate growth of high quality polycrystalline silicon via hot-wire chemical vapor deposition at silane partial pressures of 1-70 mTorr and a wire temperature of 2000°C. The Direct Simulation Monte Carlo method [1] was used, including gas-phase chemistry relevant for growth. Model predictions agree both qualitatively and quantitatively with experimental measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, 1994)Google Scholar
[2]Goodwin, D.. Mat. Res. Soc. Symp. Proc. 557, 7984 (1999).Google Scholar
[3]Goodwin, D.. Electrochem. Soc. Proc. 98–23, 227, (1998).Google Scholar
[4]Wanka, H. N., Zedlitz, R., Heintze, M., and Schubert, M. B.. Mat. Res. Soc. Symp. Proc. 420, Amorphous Silicon Technology (1996).Google Scholar
[5]Swiatek, M., to be published in Mat. Res. Soc. Symp. Proc. A (2000).Google Scholar
[6]Doyle, J., Robertson, R., Lin, G. H., He, M. Z., and Gallagher, A.. J. Appl. Phys., 64, 3215, (1988).Google Scholar
[7]Molenbroek, E. C., Mahan, A. H., Johnson, E. J., and Gallagher, A. C.. J. Appl. Phys., 79, 7278, (1996).Google Scholar
[8]Perrin, J., Shiratani, M., Kae-Nune, P., Videlot, H., Jolly, J., and Guillon, J., J. Vac. Sci. Technol. A, 16, 278, (1998).Google Scholar
[9]Using a general DSMC program, “DS2G”, v3.3–available via http:/ /www.gab.com.au/Google Scholar
[10]Molenbroek, E. C., Mahan, A. H., and Gallagher, A., J. Appl. Phys., 82, 1909, (1997).Google Scholar
[11]Thiesen, J., Iwaniczko, E., Jones, K., Mahan, A., and Crandall, R., Appl. Phys. Lett. 75, 992, (1999).Google Scholar
[12]Wolff, S., Wagner, S., Bean, J., Hull, R., and Gibson, J., Appl. Phys. Lett. 55, 2017, (1989).Google Scholar