Skip to main content Accessibility help

Gas Permeation Characteristics and Stability of Composite Silica-Metal Oxide Membranes

  • Masashi Asaeda (a1), Masakoto Kanezashi (a1), Tomohisa Yoshioka (a1) and Toshinori Tsuru (a1)


In order to improve the stability of silica membranes against water (vapor) some metal oxides were added to silica to obtain composite silica-metal oxide membranes by the sol-gel techniques. A Ni-doped silica membrane (Ni/Si=1/2) fired at 500°C showed a relatively large permeance of 1.5×10−5 [m3(STP)/(m2skPa)] with selectivity of 350 (H2/CH4), 4200 (H2/SF6) at 200°C and 100 (CO2/CH4) at 35 °C. After leaving the membrane in humid air (RH: 60%, 40°C) for 70 days, the permeance of H2 decreased by about 50% but the selectivity was improved to 930 for H2/CH4. And little change was observed in the activation energy for H2 permeation, while under the same conditions a silica membrane showed a quite large change in the activation energy from 3.1kJ/mol to 14kJ/mol. There is a possibility that metal oxides added to silica help prevent the densification of silica networks through which hydrogen and helium molecules can permeate.



Hide All
1. Asaeda, M., Yamamichi, A., Satoh, M. and Kamakura, M., “Preparation of porous silica membranes for separation of propylene/propane gaseous mixtures,” Proceedings of the third International Conference on Inorganic Membranes, 315(1994)
2. Gavalas, G. R., Megilis, C. E., S., and Nam, W., “Deposition of H2-permmselective SiO” films,” Chem. Eng. Sci. 44, 1829(1989)
3. Kitao, S., Kameda, H. and Asaeda, M., “Gas separation by thin porous silica membrane of ultra fine pores at high temperature,” MAKU(MEMBRANE) 14, 222(1990)
4. Tsapatsis, M., Gavalas, G. R., “Structure and aging characteristics of H2-permselective SiO2-Vycor membranes,” J. Memb. Sci. 87, 281(1994)
5. Asaeda, M. and Yamasaki, S., “Separation of inorganic/organic gas mixtures by porous silica membranes,” Separation and Purification Technology 25, 151(2001)
6. Asaeda, M., Yang, J. and Sakou, Y., “Porous Silica-Zirconia(50%) Membranes for Pervaporation of iso-Propyl Alcohol(IPA)/Water Mixtures,” J. Chem. Eng. Japan 35, 365(2002)
7. Asaeda, M., Sakou, Y., Yang, J. and Shimasaki, K., “Stability and performance of porous silica-zirconia composite membranes for pervaporation of aqueous organic solutions,” J. Memb. Sci. 209, 163(2002)
8. Asaeda, M., Okazaki, K. and Nakatani, A.,”Preparation of thin porous silica membranes for separation of non-aqueous organic solvent mixtures by pervaporation,” Ceramic Transactions 31, 411(1992)
9. Yoshioka, T., Nakanishi, E., Tsuru, T., and Asaeda, M., “Experimental study of gas permeation through microporous silica membranes,” AIChE Journal 47, 2052(2001)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed