Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T01:30:18.064Z Has data issue: false hasContentIssue false

Gap States in Hydrogenated Amorphous Silicon—Carbon Alloys

Published online by Cambridge University Press:  28 February 2011

P. Fiorini
Affiliation:
Dipartimento di Fisica, Universit' “La Sapienza”, 00185 Roma, Italy
F. Evangelisti
Affiliation:
Dipartimento di Fisica, Universit' “La Sapienza”, 00185 Roma, Italy
A. Frova
Affiliation:
Dipartimento di Fisica, Universit' “La Sapienza”, 00185 Roma, Italy
Get access

Abstract

Tail and defect states in the gap of a-SixCl-x:H alloys have been studied by measurements of spectral photoconductivity. The variation of defect—state density versus x is found to be negligible. By comparison with PDS results the ητ product has been determined and found to be almost independent of photonenergy and to strongly decrease with inclusion of carbon. This effect is attributed to changes in the transport mechanism combined with an increased recombination rate associated with the widening of the gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Tawada, Y., Okamoto, H., and Hamakawa, Y., Appl. Phys. Lett. 39, 237 (1981).CrossRefGoogle Scholar
2) Kuwano, Y., Ohuishi, M., Nishiwaki, H., Tsuda, S., Fukatsu, T., Enomoto, K., Nakashima, Y., and Tarui, H., Proc. of the 16th IEEE Photovoltaic Specialists Conference, 1982, p 1338.Google Scholar
3) Snell, A.J., Spear, W.E., LeComber, P.G., and Mackenzie, K., Appl. Phys. A26, 83 (1981).CrossRefGoogle Scholar
4) Munekata, H. and Kukimoto, H., Appl. Phys. Lett. 42, 432 (1983).CrossRefGoogle Scholar
5) Jackson, W.B., Kelso, S.M., Tsai, C.C., Allen, J.W. and Oh, S.-J., to be published.Google Scholar
6) Sussman, R.S. and Ogden, R., Philos. Mag. B44, 137 (1981).CrossRefGoogle Scholar
7) Anderson, D.A. and Spear, W.E., Phil. Mag. 35, 4 (1977).Google Scholar
8) Catherine, Y. and Turban, G., Thin Sol. Films 60, 193 (1979).CrossRefGoogle Scholar
9) Shimada, T., Katayama, Y., and Komatsubara, F., J. Appl. Phys. 50, 5530 (1981).CrossRefGoogle Scholar
10) Mahan, A.H., Roedern, B. von, Williamson, D.L., and Madan, A., to be published in J. Appl. Phys.Google Scholar
11) Skumanich, A., A.Frova and Amer, N.M., Solid State Commun., 1985.Google Scholar
12) Jackson, W.B. and Amer, N.M., Phys. Rev. B25, 5559 (1982).CrossRefGoogle Scholar
13) Evangelisti, F., Fiorini, P., Fortunato, G., Frova, A., Giovannella, C., and Peruzzi, R., J. Non-Cryst. Solids 55, 191 (1983).CrossRefGoogle Scholar
14) Moddel, G., Anderson, D.A. and Paul, W., Phys. Rev. B22, 1918 (1980).CrossRefGoogle Scholar
15) Jackson, W.B., Nemanich, R.J., and Amer, N.M., Phys. Rev. B27, 4861 (1983).CrossRefGoogle Scholar
16) Bullot, J., Gauthier, M., Schmidt, M., Catherine, Y., and Zamonche, A., Phil. Mag. B49, 489 (1984).CrossRefGoogle Scholar
17) Morimoto, A., Miura, T., Kumeda, M., and Shimizu, T., J. Appl. Phys. 53, 7299 (1982).CrossRefGoogle Scholar
18) Carius, R., Jahn, K., Siebert, W., and Fuhs, W., private information.Google Scholar
19) Simmons, J.G., and Taylor, G.W., Phys. Rev. B4, 502 (1971).CrossRefGoogle Scholar
20) Hack, M., S.Guha and Shur, M., Phys. Rev. B30, 6991 (1984).CrossRefGoogle Scholar