Skip to main content Accessibility help

GaN HEMT Reliability: From Time Dependent Gate Degradation to On-state Failure Mechanisms

  • Enrico Zanoni (a1), Gaudenzio Meneghesso (a1), Matteo Meneghini (a1) and Antonio Stocco (a1)


In this paper, we compare degradation modes and failure mechanisms of different AlGaN/GaN HEMT technologies. We present data concerning reverse-bias degradation of GaN-based HEMTs, which results in a dramatic increase of gate leakage current, and present a timedependent model for gate degradation. Some of the tested technologies demonstrated to be immune from this failure mechanism up to drain-gate voltages in excess of 100 V. When this was the case, the main failure mode consisted of drain current degradation during on-state tests, resulting from charge trapping in the gate-drain access region attributed to hot-electron effects. Finally, the use of diagnostic techniques such as electroluminescence microscopy and Deep Level Transient Spectroscopy for the identification of failure modes and mechanisms of GaNbased HEMTs is reviewed. Concerning reverse-bias degradation of GaN-based HEMTs, we demonstrate that, (i) when submitted to reverse-gate stress, HEMTs can show both recoverable and permanent degradation. (ii) recoverable degradation consists of a decrease in gate current and threshold voltage, which are ascribed to the simultaneous trapping of negative charge in the AlGaN layer, and of positive charge close to the AlGaN/GaN interface. (iii) permanent degradation is manifested by the generation of parasitic leakage paths. Time-dependent analysis suggests that permanent degradation can be ascribed to a defect generation and percolation process. Results supports the existence of a time to breakdown for HEMT degradation, which significantly depends on the stress voltage level. On the contrary, AlGaN/GaN technologies which were found to be resistant to gate degradation (off-state critical voltage larger than 100 V for a 0.25 um gate device) were subjected to on-state tests at different gate and drain voltage levels. All tests showed a non-recoverable degradation of electrical parameters (drain saturation current, threshold voltage and on-state resistance) and electroluminescence signal EL, with a strong dependence on the EL value of the bias point, and a negligible dependence of temperature. Once verified that EL intensity represents a reliable estimate of channel hot electron effects, we attributed the degradation to hot electron trapping in the gate-drain access region. Using EL intensity as a measure of the stress acceleration factor, we derived an acceleration law for GaN HEMT hot electron degradation similar to the one already demonstrated for GaAs devices.



Hide All
Wu, Y.-F.; Saxler, A.; Moore, M.; Smith, R.P.; Sheppard, S.; Chavarkar, P.M.; Wisleder, T.; Mishra, U.K.; Parikh, P., IEEE El. Dev. Letters, vol.: 25, no: 3, Pages: 117119, 2004.
Wu, Y.-F.; Moore, M.; Saxler, A.; Wisleder, T.; Mishra, U.K.; Parikh, P.; IEEE IEDM 583585, 2005.
Joh, Jungwoo; Xia, Ling; del Alamo, J.A.; IEEE IEDM 385388, 2007.
Joh, J. and del Alamo, J. A., IEEE IEDM 14, 2006.
Marcon, D., Lorenz, A., Derluyn, J., Das, J., Medjdoub, F., Cheng, K., Degroote, S., Leys, M., Mertens, R., Germain, M., and Borghs, G., Phys. Stat. Sol. A, vol. 6, no. S2, pp. S1024S1028, 2009.
Zanoni, E., Danesin, F., Meneghini, M., Cetronio, A., Lanzieri, Claudio, Peroni, Marco, and Meneghesso, Gaudenzio, IEEE El. Dev. Lett., Vol. 30, No. 5, pp. 427429, May 2009.
Marcon, D., Kauerauf, T., Medjdoub, F., Das, J., Van Hove, M., Srivastava, P., Cheng, K., Leys, M., Mertens, R., Decoutere, S., Meneghesso, G., Zanoni, E., and Borghs, G., IEEE IEDM 20.3.1–20.3.4, 2010
Chini, A., Fantini, F., Di Lecce, V., Esposto, M., Stocco, A., Ronchi, N., Zanon, F., Meneghesso, G., and Zanoni, E., IEEE IEDM 14, 2009.
Joh, J. and del Alamo, J. A., IEEE IEDM 14 2008.
Malbert, N., Labat, N., Curutchet, A., Sury, C., Hoel, V., de Jaeger, J.-C., Defrance, N., Douvry, Y., Dua, C., Oualli, M., Bru-Chevallier, C., Bluet, J.-M., and Chikhaoui, W., Microelectronics Reliability, vol. 49, pp. 12161221, 2009.
Kuball, Martin, Ťapajna, Milan, Simms, Richard J. T., Faqir, Mustapha, Mishra, Umesh K., Microelectronics Reliability, Vol. 51, No. 2, pp. 195200, February 2011.
Rao, H. and Bosman, G., J. Appl. Phys., vol. 108, no. 5, pp. 053707, 2010.
Marko, P., Alexewicz, A., Hilt, O., Meneghesso, G., Zanoni, E., Würfl, J., Strasser, G. and Pogany, D. , to be published on Applied Physics Letters, 2012
Joh, J., del Alamo, J. A., Chowdhury, U., Chou, T.-M., Tserng, H.-Q., Jimenez, J. L., Electron Devices, IEEE Transactions on, vol. 56, no.12, pp.2895–2901, Dec. 2009
Shigekawa, N., Shiojima, K., and Suemitsu, T., Appl. Phys. Lett. 79, 8, 1196. 2001
Meneghini, M., Stocco, A., Ronchi, N., Rossi, F., Salviati, G., Meneghesso, G., and Zanoni, E., Appl. Phys. Lett. 97, 063508, 2010.
Meneghini, M.; Stocco, A.; Bertin, M.; Ronchi, N.; Chini, A.; Marcon, D.; Meneghesso, G.; Zanoni, E.; IEEE IEDM 19.5.1–19.5.4, 2011
Dieci, Domenico, Sozzi, Giovanna, Menozzi, Roberto, Tediosi, Erika, Lanzieri, Claudio, and Canali, Claudio IEEE Transactions on Electron Devices, vol. 48, no. 9, pp. 19291936, 2001.


GaN HEMT Reliability: From Time Dependent Gate Degradation to On-state Failure Mechanisms

  • Enrico Zanoni (a1), Gaudenzio Meneghesso (a1), Matteo Meneghini (a1) and Antonio Stocco (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed