Skip to main content Accessibility help

GaN Etching in BCl3/Cl2 Plasmas

  • R. J. Shul (a1), C. I. H. Ashby (a1), C. G. Willison (a1), L. Zhang (a1), J. Han (a1), M. M. Bridges (a1), S. J. Pearton (a2), J. W. Lee (a3) and L. F. Lester (a4)...


GaN etching can be affected by a wide variety of parameters including plasma chemistry and plasma density. Chlorine-based plasmas have been the most widely used plasma chemistries to etch GaN due to the high volatility of the GaClx and NClx etch products. The source of Cl and the addition of secondary gases can dramatically influence the etch characteristics primarily due to their effect on the concentration of reactive Cl generated in the plasma. In addition, high-density plasma etch systems have yielded high quality etching of GaN due to plasma densities which are 2 to 4 orders of magnitude higher than reactive ion etch (RIE) plasma systems. The high plasma densities enhance the bond breaking efficiency of the GaN, the formation of volatile etch products, and the sputter desorption of the etch products from the surface. In this study, we report GaN etch results for a high-density inductively coupled plasma (ICP) as a function of BCl3:Cl2 flow ratio, dc-bias, chamber pressure, and ICP source power. GaN etch rates ranging from ∼100 Å/min to > 8000 Å/min were obtained with smooth etch morphology and anisotropic profiles.



Hide All
1. Pearton, S. J. and Shul, R. J., in Gallium Nitride I, ed. Pankove, J. I. and Moustakas, T. D. (Academic Press, San Diego, 1998).
2. Harrison, W. A., Electronic Structure and Properties of Solids, (Freeman, San Francisco, 1980).
3. Lin, M. E., Fan, Z. F., Ma, Z., Allen, L. H., and Morkoc, H., Appl. Phys. Lett. 64, 887 (1994)
4. Shul, R. J., Kilcoyne, S. P, Crawford, M. Hagerott, Parmeter, J. E., Vartuli, C. B., Abernathy, C. R., and Pearton, S. J., Appl. Phys. Lett. 66, 1761 (1995).
5. Zhang, L., Ramer, J., Brown, J., Zheng, K., Lester, L. F., and Hersee, S. D., Appl. Phys. Lett. 68, 367 (1996).
6. Pearton, S. J., Abernathy, C. R., and Ren, F., Appl. Phys. Lett. 64, 2294 (1994).
7. Lee, H., Oberman, D. B., and Harris, J. S. Jr., Appl. Phys. Lett. 67, 1754 (1995).
8. Vartuli, C. B., Pearton, S. J., Lee, J. W., Hong, J., MacKenzie, J. D., Abernathy, C. R., and Shul, R. J., Appl. Phys. Lett. 69, 1426 (1996).
9. Vartuli, C. B., MacKenzie, J. D., Lee, J. W., Abernathy, C. R., Pearton, S. J., and Shul, R. J., J. Appl. Phys. 80, 3705 (1996).
10. Shul, R. J., in GaN and Related Materials, ed. Pearton, S. J. (Gordon and Breach, NY 1997).
11. Shul, R. J., McClellan, G. B., Casalnuovo, S. A., Rieger, D. J., Pearton, S. J., Constantine, C., Barratt, C., Karlicek, R. F. Jr., Tran, C., and Schurman, M., Appl. Phys. Lett. 69, 1119 (1996).
12. Shul, R. J., Briggs, R. D., Han, J., Pearton, S. J., Lee, J. W., Vartuli, C. B., Killeen, K. P., and Ludowise, M. J., Mat. Res. Soc. Symp. Proc. 468, 355 (1997).
13. D'Asaro, L. A., DiLorenzo, J. L., and Fukui, H., IEEE Trans, Electron Devices ED–25, 5218 (1981).
14. Lee, Y. H., Kim, H. S., Kwon, W. S., Yeom, G. Y., Lee, J. W., Yoo, M. C., and Kim, T. I., J. Vac. Sci. Technol., in press.
15. Vartuli, C. B., Pearton, S. J., Lee, J. W., Hong, J., MacKenzie, J. D., Abernathy, C. R., and Shul, R. J., Appl. Phys. Lett. 69, 1426 (1996).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed