Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T11:18:25.147Z Has data issue: false hasContentIssue false

GaN Epitaxial Growth Process at High Growth Temperature by NH3 Source Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Naoki Ohshima
Affiliation:
Dept. of Advanced Materials Sci. & Eng., Faculty of Eng., Yamaguchi University, 2–16–1, Tokiwa-dai, Ube, Yamaguchi 755–8611, Japan
Akihiro Sugihara
Affiliation:
Dept. of Advanced Materials Sci. & Eng., Faculty of Eng., Yamaguchi University, 2–16–1, Tokiwa-dai, Ube, Yamaguchi 755–8611, Japan
Naoya Yoshida
Affiliation:
Dept. of Advanced Materials Sci. & Eng., Faculty of Eng., Yamaguchi University, 2–16–1, Tokiwa-dai, Ube, Yamaguchi 755–8611, Japan
Naohiko Okabe
Affiliation:
Dept. of Advanced Materials Sci. & Eng., Faculty of Eng., Yamaguchi University, 2–16–1, Tokiwa-dai, Ube, Yamaguchi 755–8611, Japan
Get access

Abstract

We have investigated in detail dependence of annealing GaN buffer layer and GaN growth processes on a sapphire substrate at a high temperature of 1000 degree C. The GaN layers are grown by NH3 gas source molecular beam epitaxy. The behavior of GaN buffer and epitaxial layer has been observed by in-situ reflection high-energy electron diffraction and the surface morphologies of as-grown and chemically etched GaN layers by atomic force microscopy. It is found that there is distinct difference in the surface morphology of epitaxial GaN layer between at growth temperatures of below 950 degree C and that of 1000 degree C. It has been considered that the growth kinetics of GaN epitaxial layer extremely depends on the growth temperature.

Type
articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nakamura, S., Senoh, M.. Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Umemoto, H., Sano, M. and Chocho, K., J. Cryst. Growth 189–190, 820(1998).Google Scholar
[2] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T.. Kiyoku, H., Umemoto, H., Sano, M. and Chocho, K., Jpn. J. Appl. Phys. 37, L.627(1998).Google Scholar
[3] Kobayashi, T.. Nakamura, F., Tojyo, T., Nakajima, H., Asatsuma, T., Kawai, H. and Ikade, M., Electron. Lett. 34, 1494(1998).Google Scholar
[4] Nakamura, S., Senoh, M.. Nagahama, S., Iwasa, N., Yamada, T.. Matsushita, T., Sugimoto, Y. and Kiyoku, H., Appl. Phys. Lett. 70, 2753(1997).Google Scholar
[5] Ohshima, N., Shibata, K., Orihashi, Y., and Sugihara, A., Trans. Mat. Res. Soc. Jpn. 28, pp. 813816(2003)Google Scholar
[6] Ohshima, N., Yonezu, H., Yamahira, S., and Pak, K., J. Cryst. Growth 189/190, pp. 275281(1998)Google Scholar
[7] Ohshima, N., Wakahara, A., Ishida, M.. Yonezu, H. and Yoshida, A., Jung, Y. C. and Kimura, H., J. Korean Phys. Soc. 34, 359(1999).Google Scholar
[8] Ohshima, N., Yonezu, H., Uesugi, S., Gotoh, K. and Yamahira, S., Mat. Res. Soc. Sympo. Proc. 512, 405( 1 998).Google Scholar
[9] Ohshima, N., Okamoto, S., Shibata, K., Orihashi, Y., Kageyama, S., Ishida, M., Yazawa, T. and Camargo, G., Trans. of Mat. Res. Soc. J. 27, pp. 475478(2002).Google Scholar
[10] Rouviere, J. L., Weyher, J. L., Seelmann-Eggebert, M., and Porowski, S., Appl. Phys. Lett. 73, pp. 668670(1998).Google Scholar
[11] Shen, X. Q., Ide, T., Cho, S. H., Shimizu, M., Hara, S., and Okumura, H., Appl. Phys. Lett. 77, pp. 40134015(2000).Google Scholar