Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-07T05:22:40.471Z Has data issue: false hasContentIssue false

GaN Doped with Neodymium by Plasma-Assisted Molecular Beam Epitaxy for Potential Lasing Applications

Published online by Cambridge University Press:  01 February 2011

Eric D. Readinger
Affiliation:
eric.readinger@us.army.mil, U.S. Army Research Laboratory, SEDD, Adelphi, Maryland, United States
Grace D. Metcalfe
Affiliation:
grace.metcalfe@us.army.mil, U.S. Army Research Laboratory, SEDD, Adelphi, Maryland, United States
Paul Hongen Shen
Affiliation:
pshen@arl.army.mil, U.S. Army Research Laboratory, SEDD, Adelphi, Maryland, United States
Michael Wraback
Affiliation:
mwraback@arl.army.mil, Army Research Lab, Adelphi, United States
Naveen Jha
Affiliation:
nkj2@Lehigh.EDU, United States
Nateaniel Woodward
Affiliation:
naw205@lehigh.edu, United States
Pavel Capek
Affiliation:
Physics Department, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015, U.S.A.
Volkmar Dierolf
Affiliation:
vod2@lehigh.edu, Lehigh University, Physics Department, Bethlehem, Pennsylvania, United States
Get access

Abstract

We provide an investigation of in situ doping of GaN with the RE element Nd by plasma assisted-molecular beam epitaxy (PA-MBE). GaN epilayers are grown on c-plane sapphire and free standing GaN substrates and the Nd doping is controlled by an effusion cell. The ideal growth conditions for Nd incorporation maintaining crystal quality in GaN were investigated. The optical absorption characteristics indicate that the GaN:Nd epilayer remains transparent at the Nd emission wavelength of interest. For the highest Nd effusion cell temperatures, Rutherford backscattering and secondary ion mass spectrometry data indicate ˜5 at. % in epilayers grown on c-plane sapphire. X-ray diffraction found no evidence of phase segregation up to ˜1 at. % Nd. The highest luminescence intensities correspond to a doping range 0.05-1 at. %, with the strongest emission occurring at 1.12 eV (1107 nm). We also present the Stark energy sublevels of Nd3+ ions in GaN as determined by luminescence spectra. Photoluminescence excitation spectra reveal an optimal excitation energy of 1.48 eV (836 nm). We correlate the photoluminescence spectra with transitions from the 4F3/2 excited state to the 4I9/2, 4I11/2, and 4I13/2 multiplets of the Nd3+ ion for above (325nm) and below (836nm) bandgap excitation. Spectral correlation of the Nd emission multiplets in addition to site-selective spectroscopy studies using combined excitation-emission spectroscopy with confocal microscopy indicate enhanced substantial doping at the Ga site compared to other techniques (ion implantation and co-sputtering).

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blasse, G., Grabmaier, B. C., Luminescent Materials, Springer-Verlag, Berlin, 1994.Google Scholar
2. Favennec, P. N., L'Haridon, H., Salvi, M., Moutonnet, D., Leguillou, Y., Electronic Lett. 25, 718 (1989).Google Scholar
3. Steckl, A. J., Heikenfeld, J. C., Lee, D. S., Garter, M. J., Baker, C. C., Wang, Y. Q., Jones, R., IEEE J. Sel. Top. Quantum Electron. 8, 749 (2002).Google Scholar
4. Steckl, A J., Zavada, J. M., Mater. Res. Bull. 24, 16 (1999).Google Scholar
5. Steckl, A J., Zavada, J. M., Mater. Res. Bull. 24, 33 (1999).Google Scholar
6. Koechner, W., Solid-State Laser Engineering, (Springer, Berlin), 5th ed., pg. 37 (1999).Google Scholar
7. Kim, S., Rhee, S. J., Li, X., Coleman, J. J., Bishop, S. G., Phys. Rev. B 57, 14588 (1998).Google Scholar
8. Kim, J. H., Davidson, M. R., Holloway, P. H., Appl. Phys. Lett. 83, 4746 (2003).Google Scholar
9. Kim, J. H., Holloway, P. H., Appl. Phys. Lett. 85, 1689 (2004).Google Scholar
10. Kim, J. H., Holloway, P. H., J. Appl. Phys. 95, 4787 (2004).Google Scholar
11. Kim, J. H., Shepherd, N., Davidson, M., Holloway, P. H., Appl. Phys. Lett. 83, 641 (2003).Google Scholar
12. Metcalfe, G. D., Readinger, E. D., Shen, H., Woodward, N. T., Dierolf, V., and Wraback, M., J. Appl. Phys. in press (2008).Google Scholar
13. Readinger, E. D., Metcalfe, G. D., Shen, H., and Wraback, M., Appl. Phys. Lett. 92, 061108 (2008).Google Scholar
14. Zou, J., Kutchetkov, D., Balandin, A. A., Florescu, D. I., and Pollak, Fred H., J. Appl. Phys. 92, 2534 (2002).Google Scholar
15. Silkowski, E., Yeo, Y. K., Hengehold, R. L., Goldenberg, B., and Pomrenke, G. S., Rare Earth Doped Semiconductors II Symposium, 69 (1996).Google Scholar
16. O'Donnell, K. P., Hourahine, B., Eur. Phys. J.-Appl. Phys. 36, 91 (2006).Google Scholar
17. Vanuiter, L. G. and Johnson, L. F., J. Chem. Phys. 44, 3514 (1966).Google Scholar
18. Kim, J. H. and Holloway, P. H., J. Appl. Phys. 95, 4787 (2004).Google Scholar
19. Bang, H. J., Morishima, S., Sawahata, J., Seo, J., Takiguchi, M., Tsunemi, M., Akimoto, K., and Nomura, M., Appl. Phys. Lett. 85, 227 (2004).Google Scholar
20. Lee, D. S., Heikenfeld, J., Steckl, A. J., Hommerich, U., Seo, J. T., Braud, A., and Zavada, J., Appl. Phys. Lett. 79, 719 (2001).Google Scholar
21. Dierolf, V., Sandmann, C., Zavada, J., Chow, P., and Hertog, B., J. Appl. Phys. 95, 5464 (2004).Google Scholar
22. Dierolf, V., Fleischman, Z., Sandmann, C., Wakahara, A., Fujiwara, T., Munasinghe, C., Steckl, A, Mater. Res. Soc. Symp. Proc. 866, V3.6.1 (2005).Google Scholar
23. Woodward, N., Jha, N., Readinger, E., Metcalfe, G., Wraback, M., and Dierolf, V., Mater. Res. Soc. Symp. Proc., in press (2008).Google Scholar