Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T08:02:55.737Z Has data issue: false hasContentIssue false

Gadolinium Borosilicate Glass-Bonded Gd-Silicate Apatite: A Glass-Ceramic Nuclear Waste Form for Actinides

Published online by Cambridge University Press:  21 March 2011

Donggao Zhao
Affiliation:
Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 Current address: Electron Microscopy Center and Department of Geological Sciences, University of South Carolina, Columbia, SC 29208
Liyu Li
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
L.L. Davis
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
W.J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
R.C. Ewing
Affiliation:
Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104
Get access

Abstract

A Gd-rich crystalline phase precipitated in a sodium gadolinium alumino-borosilicate glass during synthesis. The glass has a chemical composition of 45.4-31.1 wt% Gd2O3, 28.8-34.0 wt% SiO2, 10.8-14.0 wt% Na2O, 4.3-5.9 wt% Al2O3, and 10.8-14.9 wt% B2O3. Backscattered electron images revealed that the crystals are hexagonal, elongated, acicular, prismatic, skeletal or dendritic, tens of μm in size, some reaching 200 μm in length. Electron microprobe analysis confirmed that the crystals are chemically homogeneous and have a formula of NaGd9(SiO4)6O2 with minor B substitution for Si. The X-ray diffraction pattern of this phase is similar to that of lithium gadolinium silicate apatite. Thus, this hexagonal phase is a rare earth silicate with the apatite structure. We suggest that this Gd-silicate apatite in a Gd-borosilicate glass is a potential glass-ceramic nuclear waste form for actinide disposition. Am, Cm and other actinides can easily occupy the Gd-sites. The potential advantages of this glass-ceramic waste form include: 1) both the glass and apatite can be used to immobilize actinides, 2) silicate apatite is thermodynamically more stable than the glass, 3) borosilicate glass-bonded Gd-silicate apatite is easily fabricated, and 4) the Gd is an effective neutron absorber.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, L., Strachan, D.M., Li, H., Davis, L.L., and Qian, M., Ceramic Transaction (in press).Google Scholar
2. Li, L., Strachan, D.M., Li, H., Davis, L.L., and Qian, M., J. Non-Crystalline Solids (in press).Google Scholar
3. Davis, L.L., Li, L., Darab, J.G., Li, H., Strachan, D., Allen, P.G., Bucher, J.J., Craig, I.M., Edelstein, N.M., Shuh, D.K., Scientific Basis for Nuclear Waste Management XXII - Mat. Res. Soc. Symp. Proc., v. 556, p. 313320 (1999).Google Scholar
4. Weber, W.J., Turcottte, R.P., Bunnell, L.R., Roberts, F.P., and Westsik, J.H. Jr, in: Ceramics in Nuclear Waste Management – Proc. Int. Symp. Amer. Cer. Soc. (eds. Chikalla, T.D. and Mendel, J.E.), CONF-790420, National Technical Information Service, Springfield, Virginia, p. 294299 (1979).Google Scholar
5. Ewing, R.C., Lutze, W., and Weber, W.J., J. Mater. Res. 10, 243 (1995).Google Scholar
6. Smolin, Y.I. and Tkachev, S.P., Kristallografiya Krisa 14, 22 (1969).Google Scholar
7. Smolin, Y.I. and Shepelov, Y.F., Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy IVNMA 3, 1034 (1967).Google Scholar
8. Smolin, Y.I. and Shepelov, Y.F., Acta Crystallogr. B 26, 484 (1970).Google Scholar
9. Smolin, Y.I. and Shepelov, Y.F., Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy IVNMA 5, 1823 (1969).Google Scholar
10.JCPDS-ICDD # 32-0557 (1980).Google Scholar
11. Avetisyan, E.I., Chchagov, A.V., and Belov, N.V., Kristallografiya Krisa 15, 1066 (1970).Google Scholar
12. Fallon, G.D. and Gatehouse, B.M., Acta Crystallogr. B 38, 919 (1982).Google Scholar
13. Calestani, G., Bacca, G., and Andreetti, G.D., Zeolite 7, 59 (1987).Google Scholar
14. Hughes, J.M., Mariano, A.N., and Drexler, J.W., Neues Jb. Miner. Monat. (7), 311 (1992).Google Scholar
15. Bastin, G.F., Voo, F.J.J. van, and Heijligers, H.J.M., X-ray Spectrum 13, 91 (1984).Google Scholar
16. Zhao, D., Davis, L.L., Li, L., Palenik, C.S., Wang, L.M., Strachan, D.M., and Ewing, R.C., Scientific Basis for Nuclear Waste Management - Mat. Res. Soc. Symp. Proc. (in press).Google Scholar
17. Zhao, D., Wang, L.M., Ewing, R.C., Li, L., Davis, L.L., and Strachan, D.M., J. Crystal Growth (in review).Google Scholar
18. Ito, J., Amer. Mineral. 53, 890 (1968).Google Scholar
19. Felsche, J., J. Solid State Chem. 5, 266 (1972).Google Scholar
20. Felsche, J., in Structure and Bonding 13 (eds. Dunitz, J.D., Hemmerich, P., Ibers, J.A., Jørgensen, C.K., Neilands, J.B., Nyholm, R.S., Reinen, D., and Williams, R.J.P.), Springer-Verlag, Berlin, p.99197 (1973).Google Scholar
21. McConnell, D., Apatite: Its Crystal Chemistry, Mineralogy, Utilization, and Geologic and Biologic Occurrences. Springer-Verlag, New York (1973).Google Scholar
22. Ewing, R.C., Weber, W.J., and Clinard, F.W. Jr, Progress in Nuclear Energy 29, 63 (1995).Google Scholar
23. Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C., J. Mater. Res. 12, 1946 (1997).Google Scholar
24. Weber, W.J., Ewing, R.C., Catlow, C.R.A., Rubia, T. Diaz de la, Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.H.K., Vance, E.R., and Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).Google Scholar
25. Weber, W.J., Turcottte, R.P., and Roberts, F.P., Radioactive Waste Mangement 2, 295 (1982).Google Scholar
26. Weber, W.J. and Roberts, F.P., Nuclear Technology 60, 178 (1982).Google Scholar
27. Weber, W.J., Radiation Effects 77, 295 (1983).Google Scholar
28. Weber, W.J., J. Amer. Cer. Soc. 76, 1729 (1993).Google Scholar
29. Weber, W.J., Hess, N.J., and Wang, L.M., Mat. Res. Soc. Symp. Proc. 321, 435 (1994).Google Scholar
30. Wang, L.M., Cameron, M., Weber, W.J., Crowley, K.D., and Ewing, R.C., in: Hydroxyapatite and Related Materials (eds. Brown, P.W. and Constantz, B.), CRC Press, p.243249 (1994).Google Scholar
31. Wang, L.M. and Weber, W.J., Phil. Mag. 79, 237 (1999).Google Scholar
32. Cameron, M., Wang, L.M., Crowley, K.D., and Ewing, R.C., in: Proc. 50th Annual Meeting Electron Microscopy Soc. Amer. (eds. Bailey, G.W., Bentley, J., and Small, J.A.), San Francisco Press p. 378493 (1992).Google Scholar
33. Weber, W.J., Ewing, R.C., and Meldrum, A., J. Nucl. Mater. 250, 147 (1997).Google Scholar
34. Lutze, W., Borchardt, J., and De, A.K., in: Scientific Basis for Nuclear Waste management 1 (ed. McCarthy, G.J.), Plenum Press, New York, p. 6981 (1979).Google Scholar
35. Hayward, P.J., in: Radioactive Waste Forms for the Future (eds. Lutze, W. and Ewing, R.C.), North-Holland Physics Publishing, Amsterdam, p. 427493 (1988).Google Scholar
36. Hayward, P.J., Glass Technology 29, 122 (1988).Google Scholar
37. Donald, I.W., Metcalfe, B.L., and Taylor, R.N.J., J. Mater. Sci. 32, 5851 (1997).Google Scholar
38. Bart, F., L'Hermite, V., Houpert, S., Fillet, C., Pacaud, F., and Jacquet-Francillon, N., 99th Annual Meeting Amer. Cer. Soc. (1997).Google Scholar
39. Morss, L.R., Richmann, M.K., and Lexa, D., Abstr. Pap. Amer. Chem. Soc. 218, p. 99–IEC (1999).Google Scholar
40. Oversby, V.M., in: Materials Science and Technology: A Comprehensive Treatment 10B (Nuclear Materials, Part 2) (ed. Frost, B.R.T.), VCH, Weinheim,p. 391442 (1994).Google Scholar
41. Fleet, M.E. and Pan, Y., Amer. Mineral. 80, 329 (1995).Google Scholar
42. Forster, H.J., Amer. Mineral. 83, 1302 (1998).Google Scholar
43. Bros, R., Carpena, J., Sere, V., and Beltritti, A., Radiochimica Acta 74, 277 (1996).Google Scholar
44. , Meis et al., J. Appl. Chem. A 104, 5380 (2000).Google Scholar