Skip to main content Accessibility help
×
Home

GaAs Surface Stabilization by Vacuum Anneal with SiO

  • G. J. Gerardi (a1), F. C. Rong (a1), E. H. Poindexter (a1), M. Harmatz (a1), H. Shen (a2) and W. L. Warren (a3)...

Abstract

We find a significant alteration of the surface properties of SI- GaAs as a result of a thermal treatment with SiO under vacuum. Low temperature photoluminescence measurements reveal a tenfold increase in emissions attributed to free or donor bound excitons and the exciton bound to a silicon acceptor. A paramagnetic center is also generated as a result of this treatment. The EPR signal has a g-value of 2.0017 and a linewidth of 0.1 mT. The enhanced photoluminescence and the EPR signal are both quenched by a short exposure to hydrogen plasma at room temperature. Chemical and spectroscopic evidence indicates that the resonance is due to a silicon related center near the GaAs surface. The surface stabilization is attributed to a reaction or incorporation of SiO with the arsenic depleted GaAs surface.

Copyright

References

Hide All
[1] Sandroff, R. C. J., Nottenburg, R. N., Bischoff, J. C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).
[2] Iyer, R. and Lile, D. L., Appl. Phys. Lett. 59, 437 (1991).
[3] Offsey, S. D., Woodall, J. M., Warren, A. C., Kirchner, P. D., Chappell, T. I., and Pettit, G. D., Appl. Phys. Lett. 48, 475 (1986).
[4] Kauffmann, J. F. and Richmond, G. L., Appl. Phys. Lett. 59, 561 (1991).
[5] Viktorovitch, P., Gendry, M., Krawczyk, S. K., Krafft, F., Abraham, P., Bekkaoui, A., and Monteil, Y., Appl. Phys. Lett. 58, 2387 (1991).
[6] Callegari, A., Hoh, P. D., Buchanan, D. A., and Lacey, D., Appl. Phys. Lett. 54, 332 (1989).
[7] Gottscho, R. A., Preppernau, B. L., Pearton, S. J., Emerson, A. B., and Giapis, K. P., J. Appl. Phys. 68, 440 (1990).
[8] Yoon, E., Gottsho, R. A., Donnelly, V. M., and Luftman, H. S., Appl. Phys. Lett. 60, 2681 (1992).
[9] Callegari, A., Sadana, D. K., Buchanen, D. A., Paccagnella, A., Marshall, E. D., Tischler, M.A., Norcott, M., Appl. Phys. Lett. 58, 2540 (1991).
[10] Hiramatsu, T., Goto, H., Hirobe, T., Hirofuji, Y., and Kimata, M., Jpn. J. Appl. Phys. 18, 853 (1979).
[11] Goltzene, A., Meyer, B., and Schwab, C., J. Appl. Phys. 53, 4541 (1982).
[12] Goltzene, A., Poiblaud, G., and Schwab, C., J. Appl. Phys. 50, 5425 (1979).
[13] Bottcher, R., Wartewig, S., Bindemann, R., Kuhn, G., and Fischer, P., phys. stat. sol. (b) 58, K23 (1973) K23.
[14] Pearton, S. J., Corbett, J. W., Shi, T. S., Appl. Phys. A 43, 153 (1987).
[15] Cho, H. Y., Kim, E. K., Lee, H. S., and Min, S., J. Appl. Phys. 71, 1960 (1992).
[16] Reed, M. L., Plummer, J. D., J. Appl. Phys. 63, 5776 (1988).

GaAs Surface Stabilization by Vacuum Anneal with SiO

  • G. J. Gerardi (a1), F. C. Rong (a1), E. H. Poindexter (a1), M. Harmatz (a1), H. Shen (a2) and W. L. Warren (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed