Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-19T07:17:10.942Z Has data issue: false hasContentIssue false

GaAs Epitaxial Growth by ECR-MBE

Published online by Cambridge University Press:  16 February 2011

Naoto Kondo
Affiliation:
NTT Opto-electronics Laboratories, 3-1 Morinosato Wakamiya, Atsugi-Shi, Kanagawa Pref., 243-01 Japan
Yasushi Nanishi
Affiliation:
NTT Opto-electronics Laboratories, 3-1 Morinosato Wakamiya, Atsugi-Shi, Kanagawa Pref., 243-01 Japan
Tomohiro Shibata
Affiliation:
NTT Opto-electronics Laboratories, 3-1 Morinosato Wakamiya, Atsugi-Shi, Kanagawa Pref., 243-01 Japan
Norio Yamamoto
Affiliation:
NTT Opto-electronics Laboratories, 3-1 Morinosato Wakamiya, Atsugi-Shi, Kanagawa Pref., 243-01 Japan
Masatomo Fujimoto
Affiliation:
NTT Opto-electronics Laboratories, 3-1 Morinosato Wakamiya, Atsugi-Shi, Kanagawa Pref., 243-01 Japan
Get access

Abstract

Electron-cyclotron-resonance plasma-excited molecular beam epitaxy (ECR-MBE) is a new technique for GaAs growth. This paper describes surface cleaning of GaAs and Si substrates at fairly low temperatures using hydrogen plasma, low temperature growth of GaAs on both substrates, and selective area growth of GaAs on both substrates partially covered with a silicon nitride (SiN) mask. The ability to clean and grow at low temperatures-assumed to be a benefit of using energetic particles—should permit us to grow layers on processed GaAs and/or Si substrates. The electrical properties of grown layers are also described. Selective area growth has been successfully carried out with no deposit on the mask or irregular growth at the mask edge. The desorption process introduced by impinging ions is found to play an important role in the selective area growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsuoka, M. and Ono, K., Appl. Phys. Lett. 50, 1864 (1987).Google Scholar
2. Kondo, N. and Nanishi, Y., Proc. 11th Symp. on ISIAT'87, (Tokyo, 1987) pp.333336.Google Scholar
3. Kondo, N. and Nanishi, Y., in Deposition and Growth: Limits for Microelectronics, edited by Rubloff, G. W. (AIP Conf. Proc. 167, New York, 1988) pp.320328 Google Scholar
4. Kondo, N. and Nanishi, Y., Appl. Phys. Lett. 54, 2419 (1989).Google Scholar
5. Kondo, N. and Nanishi, Y., Jpn. J. Appl. Phys. 28, L7 (1989).Google Scholar
6. Nanishi, Y., Shibata, T. and Kondo, N., J. Electrochem. Soc. 135, 452c (1988).Google Scholar
7. Shibata, T., Kondo, N. and Nanishi, Y., J. Electrochem. Soc. 136, 3459 (1989).Google Scholar
8. Shibata, T., Nanishi, Y. and Fujimoto, M., Jpn. J. Appl. Phys. 29, L1181 (1990).Google Scholar
9. Yamamoto, N., Kondo, N. and Nanishi, Y., J. Cryst. Growth 96, 705 (1989).Google Scholar
10. Yamamoto, N., Kondo, N. and Nanishi, Y., J. Cryst. Growth 99, 302 (1990).Google Scholar
11. Yamamoto, N., Kondo, N. and Nanishi, Y., J. Cryst. Growth 108, 433 (1991).Google Scholar
12. Yamamoto, N., Kondo, N. and Nanishi, Y., Appl. Phys. Lett. 58, 604 (1991).Google Scholar
13. Shibata, T., Kondo, N., Nanishi, Y. and Fujimoto, M. in Layered Structures-Heteroepitaxy, Superlattices, Strain, and Metastability, edited by Dodson, B. W., Schowalter, L. J., Cunningham, J. E., and Pollak, F. H. (Mater. Res. Symp. Proc. 160, Pittsburgh, 1990) pp. 487492.Google Scholar
14. Chang, R. P. H., Chang, C. C. and Darack, S., J. Vac. Sci. Technol. 20, 45 (1982).Google Scholar
15. Rudder, R. A., Fountain, G. G. and Markunus, R. J., J. Appl. Phys., 60, 3519 (1986).Google Scholar
16. Anthony, B., Breaux, L., Hsu, T., Banerjee, S. and Tasch, A., J. Vac. Sci. Technol. B7, 321 (1989).Google Scholar
17. Miyake, K., Jpn. J. Appl. Phys. 28, 2376 (1989).Google Scholar
18. Gao, Q. Z., Hariu, T. and Ono, S., Jpn. J. Appl. Phys. 26, L1576 (1987).Google Scholar
19. Sugata, S., Takamori, A., Takado, N., Asakawa, K., Miyauchi, E. and Hashimoto, H., J. Vac. Sci. Technol. B6, 1087 (1988).Google Scholar
20. Takamori, A., Sugata, S., Asakawa, K., Miyauchi, E. and Hashimoto, H., Jpn. J. Appl. Phys. 26, L142 (1987).Google Scholar
21. Yamada, H., J. Appl. Phys. 65, 775 (1989).Google Scholar
22. Tanaka, Y., Kunitsugu, Y., Suemune, I., Honda, Y., Kan, Y., and Yamanishi, M., J. Appl. Phys., 64, 2778 (1988).Google Scholar
23. Suemune, I., Kunitsugu, Y., Tanaka, Y., Kan, Y. and Yamanishi, M., Appl. Phys. Lett. 53, 2173 (1988).Google Scholar
24. Suemune, I., Kunitsugu, Y., Kan, Y. and Yamanishi, M., Appl. Phys. Lett. 55, 760 (1989).Google Scholar
25. Matsushita, K., Sugiyama, Y., Igarashi, S., Hariu, T. and Shibata, Y., Jpn. J. Appl. Phys. 22, L602 (1983).Google Scholar
26. Matsushita, K., Sato, T., Sato, Y., Sugiyama, Y., Hariu, T. and Shibata, Y., IEEE Trans. on Electron Devices ED – 31, 1092 (1984).Google Scholar
27. Pande, K. P. and Seabaugh, A. C., J. Electrochem. Soc. 131, 1357 (1984).Google Scholar
28. Pande, K. P. and Aina, O., J. Vac. Sci. Technol. A4, 673 (1986).Google Scholar
29. Vodjdani, N., Erman, M. and Theeten, J. B., J. Cryst. Growth 71, 141 (1985).Google Scholar
30. Ghosh, C. and Layman, R. L., Appl. Phys. Lett. 45, 1229 (1984).Google Scholar
31. Kamon, K., Takagishi, S. and Mori, H., J. Cryst. Growth 73, 73 (1985).Google Scholar
32. Cho, A. Y. and Ballamy, W. C., J. Appl. Phys. 46, 783 (1975).Google Scholar
33. Okamoto, A. and Ohata, K., Appl. Phys. Lett. 51, 1512 (1987).Google Scholar
34. Tokumitsu, E., Kudou, Y., Konagai, M. and Takahashi, K., J. Appl. Phys. 55, 3163 (1985).Google Scholar
35. Heinecke, H., Brauers, A., Grafahrend, F., Plass, C., Pütz, N., Werner, K., Weyers, M., Lüth, H. and Balk, P., J. Cryst. Growth 77, 303 (1986).Google Scholar
36. Yokoyama, S., Oogi, S., Yui, D. and Kawabe, M., J. Cryst. Growth 95, 32 (1989).Google Scholar