Skip to main content Accessibility help
×
Home

Fundamental and Technological Aspects of Actinide Oxide Pyrochlores: Relevance For Immobilization Matrices

  • P. E. Raison (a1), R. G. Haire (a1), T. Sato (a2) and T. Ogawa (a2)

Abstract

Polycrystalline pyrochlore oxides consisting of selected f elements (lanthanides and actinides) and Zr and Hf have been prepared and characterized. Characterization to date has been primarily by X-ray diffraction, both at room and at elevated temperatures. Initial studies concentrated on selected lanthanides and the Np, Pu and Am analogs (reported here) but have been extended to the other actinide elements through Cf. Data from these studies have been used to establish a systematic correlation regarding the fundamental materials science of these particular pyrochlores and structurally related fluorite-type dioxides. In addition to pursuing their materials science, we have addressed some potential technological applications for these materials. Some of the latter concern: (1) immobilization matrices; (2) materials for transmutation concepts; and (3) special nuclear fuel forms that can minimize the generation of nuclear wastes. For f elements that display both a III and IV oxidation state in oxide matrices, the synthetic path required for producing the desired pyrochlore oxide is dictated by their pseudo-oxidation potential the stability of the compound towards oxygen uptake. For the f elements that display an oxidationreduction cycle for pyrochlore-dioxide solid solution, X-ray diffraction can be used to identify the composition in the oxidation-reduction cycle, the oxygen stoichiometry and/or the composition. This paper concentrates on the Np, Pu and Am systems, and addresses the above aspects, the role of the crystal matrix in controlling the ceramic products as well as discussingsome custom-tailored materials.

Copyright

References

Hide All
1. Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M. and Ramm, E. J. in Radioactive Waste Forms for the Future, eds. Lutze, W. and Ewing, R. C., Elsevier, Amsterdam, 1988, pp.233–334.
2. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. and Major, A., Nature 278,219(1979).
3. Vance, E. R., MRS Bulletin XIX, No.12, Dec., 1994, 2832.
4. Harker, A. B., in Radioactive Waste Forms for the Future, eds. Lutze, W. and Ewing, R. C., Elsevier, Amsterdam, 1988, pp.335392.
5. Lutze, W. and Ewing, R. C., in Radioactive Waste Forms for the Future, eds. Lutze, W. and Ewing, R. C., Elsevier, Amsterdam, 1988, pp.699740.
6. Shoup, S. S., Bamberger, C. E. and Haire, R. G., J. Am. Ceram. Soc. 79«6»,1489 (1996).
7. Longo, J. M., Raccah, P. M., Goodenough, J. B., Mat. Res. Bull. 5, 191(1969).
8. Subramanian, M. A., Aravamudan, G. and Rao, G. V. Subba, Prog. Solid State Chem. 15, 55(1983).
9. Kamizono, H., Hayakawa, I. and Muraoka, S., J. Am. Ceram. Soc., 74, 863(1991).
10. Hayakawa, H., and Kamizono, H., J. Nucl. Mat. 202, 163(1993).
11. Hayakawa, I. and Kamizono, H., J. Mat. Science 28, 513(1993).
12. Hayakawa, I. and Kamizono, H., Mat. Res. Soc. Symposium Proc. 302, 257(1992).
13. Chick, L. A. and Turcotte, R. P., Batelle Pacific Northwest Lab., Richland WA, Rept. PNL-4576, 1983.
14. Hart, K. P., Vance, E. R., Stewart, M. W. A., Weir, J., Carter, M. L., Hambleyt, M., Brownscomb, A., Day, R. A., Leung, S., Ball, C. J., Ebbinghaus, B., Gray, L. and Kan, T., Mat. Res. Soc. Symp. Proc., 506, 161(1998).
15. Chakoumakos, C. B. and Ewing, R. C., Mat. Res. Soc. Symp. 44, 641(1985).
16. Gong, W. L., Lutze, W. and Ewing, R. C., Mat. Res. Soc., Fall Symp., 1998 (in press).
17. Williams, D., Ames Lab., Ames, IA, Rep. IS-1052, 1962 (modified for PC use).
18. Smith, D. and Smith, K., Micro-Powd, Materials Data, Inc., Livennmore, CA, 1992.
19. Haire, R. G. and Eyring, L., in Handbook on the Physics and Chemistry of Rare Earth, Vol. 18, Lanthanides and Actinides: Chemistry, eds. Gschneidner, K. A. Jr., Eyring, L., Choppin, G. R. and Lander, G. H., North-Holland, Amsterdam, pp. 449505, 1994.
20. Radzewitz, H., in Kernforshungzentrum Rep. N. 433, 1966, Karlsrhule, Germany.
21. Carroll, D. F., J. Am. Cerm. Soc., 46, 194(1963).
22. Oversby, V. M., McPheeters, C. C., Delguerdre, C., Paratte, J. M., J. Nuclear Mat., 245, 17(1997).
23. Aleshin, E. and Roy, R., J. Am. Chem. Soc., 45, 18 (1962).
24. Longo, J. M., Raccah, P. M. and Goodenough, J. B., Mat. Res. Bull, 191, 4 (1969).
25. Knop, O., Brisse, F., Castelliz, L. and Sutarno, A., Can. J. Chem., 43, 2812 (1965).
26. Pannetier, J. and Lucas, J., Mat. Res. Bull., 5, 797(1970).
27. Shannon, R. D., Acta. Cryst. A32, 751(1976).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed