Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T21:51:47.118Z Has data issue: false hasContentIssue false

Functionalized Guanidines for Electro-Optic Materials.

Published online by Cambridge University Press:  01 February 2011

Nicholas Buker
Affiliation:
University of Washington Dept of Chemistry, Box 351700 Seattle, WA 98195
Kimberly A. Firestone
Affiliation:
University of Washington Dept of Chemistry, Box 351700 Seattle, WA 98195
Marnie Haller
Affiliation:
Univeristy of Washington Dept of Materials Science and Engineering
Lafe Purvis
Affiliation:
University of Washington Dept of Chemistry, Box 351700 Seattle, WA 98195
David Lao
Affiliation:
University of Washington Dept of Chemistry, Box 351700 Seattle, WA 98195
Robert Snoeberger
Affiliation:
University of Washington Dept of Chemistry, Box 351700 Seattle, WA 98195
Alex K.-Y. Jen
Affiliation:
Univeristy of Washington Dept of Materials Science and Engineering
Larry R. Dalton
Affiliation:
University of Washington Dept of Chemistry, Box 351700 Seattle, WA 98195
Get access

Abstract

A family of nonlinear optical chromophores has been synthesized containing novel donor systems based on functionalized guanidines. Chromophores utilizing these donor systems display superior transparency and stability properties. The unusual and highly desirable characteristics of these chromophores make them very promising candidates for electro-optic applications. Systematic study of the molecular hyperpolarizabilities and bulk electro-optic properties of polymers containing these chromophores is being used to guide optimization of these systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Dalton, L. R. Advances in Polymer Science, 2002, 158, 186.Google Scholar
(2) Raimundo, J.-M.; Blanchard, P.; N., G.-P.; Mercier, N.; Ledoux-Rak, I.; Hierle, R.; Roncali, J. J. Org. Chem., 2002, 67, 205218.Google Scholar
(3) Boldt, P.; Eisentrager, T.; Glania, C.; Goldenitz, J.; Kramer, P.; Matschiner, R.; Rase, J.; Schwesinger, R.; Wichern, J.; Wortman, R. Adv. Mater. 1996, 8, 672675.Google Scholar
(4) Katti, K. V.; Raghuraman, K.; Pillarsetty, N.; Karra, S. R.; Gulotty, R. J.; Chartier, M. A.; Langhoff, C. A. Chem. Mater. 2002, 14, 24362438.Google Scholar
(5) Isobe, T.; Fukuda, K.; Ishikawa, T. Tetrahedron: Asym. 1998, 9, 17291735.Google Scholar
(6) Firestone, K. A.; Reid, P. J.; Lawson, R.; Jang, S.-H.; Dalton, L. R. Inorg. Chim. Acta. 2004, 357, 39573966.Google Scholar
(7) F., K.; I., L.; Zyss, J. Phys. Rev. A. 1987, 36, 22102219.Google Scholar
(8) Clays, K.; Persoons, A. Phys. Rev. Lett. 1991, 66, 29802983.Google Scholar
(9) Kaatz, P.; Shelton, D. P. Opt. Commun. 1998, 157, 177181.Google Scholar