Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T02:39:14.193Z Has data issue: false hasContentIssue false

Functionalisation of CdSe and GaAs Quantum Dots

Published online by Cambridge University Press:  21 February 2011

Sebastian J. Nørager
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, ondon, W7 2AY, UK Manchester Materials Science Centre and the Department of Chemistry, University of Manchester, Oxford Road, Manchester, 1 3 9PL
Michael Lazell
Affiliation:
Manchester Materials Science Centre and the Department of Chemistry, University of Manchester, Oxford Road, Manchester, 1 3 9PL
Paul O'Brien
Affiliation:
Manchester Materials Science Centre and the Department of Chemistry, University of Manchester, Oxford Road, Manchester, 1 3 9PL
Get access

Abstract

In this communication we report the preliminary results of in-situ functionalisation, of Q-CdSe and Q-GaAs using thiols, (HSC12H25), dithiols, (HSC9H18SH), pyridine derivatives (4-ethylpyridine, 4-butylpyridine) and carboxylic acids (mercaptopropionic acid).

The functionalisation of the capping group provides a potential route to the assembly of 2D arrays and supperlattices. Anchorage of the nanocrystals to surfaces for use in devices, such as solar cells and Grätzel type cells is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dounghong, D., Ramsden, J., and Gratzel, M., J. Am. Chem. Soc. 104, p. 2977 (1982).Google Scholar
2. Rossetti, R., Ellison, J. L., Gibson, J. M., and Brus, L. E., J. Chem. Phys. 80, p. 4464 (1984).Google Scholar
3. Henglein, A., Chem. Rev. 89, p. 1861 (1989).Google Scholar
4. Steigerwald, M. L. and Brus, L. E., Acc. Chem. Res. 23, p. 183 (1990).Google Scholar
5. Wang, Y. and Herron, N., J. Phys. Chem. 95, p. 525 (1991).Google Scholar
6. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O., and Rubner, M. F., Appl. Phys. Lett. 66, p. 1316 (1995).Google Scholar
7. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P., Nature 370, p. 354 (1994).Google Scholar
8. Hakimi, F., Bawendi, M. G., Tumminelli, R., and Haavisto, J. R., U.S. Patent 5,260,957 (1993).Google Scholar
9. Grdtzel, C. K. and Grdtzel, M., J. Am. Chem. Soc. 101, p. 7741 (1979).Google Scholar
10. Weller, H., Adv. Mater. 5, p. 88 (1993).Google Scholar
11. Hagfeldt, A. and Grätzel, M., Chem. Rev. 95, p. 49 (1995).Google Scholar
12. Green, M. and O'Brien, P., J. Chem. Soc, Chem. Commun. p. 2459 (1998).Google Scholar
13. Green, M. and O'Brien, P., J. Mat. Chem. 9, p. 243 (1999).Google Scholar
14. Ludolph, B., Malik, M. A., O'Brien, P. and Revaprasadu, N., J. Chem. Soc, Chem. Commun. p. 1849 (1998).Google Scholar
15. Sato, T., Hasko, D. G., Ahmed, H., J. Vac. Sci. Technol. B 15(1), p. 45 (1997).Google Scholar
16. Sato, T., Brown, D., Johnson, B. F. G., J. Chem. Soc., Chem. Commun. p. 1007 (1997).Google Scholar