Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T22:49:53.844Z Has data issue: false hasContentIssue false

FT-IR Characterization of the Acidic and Basic Sites on a Nanostructured Aluminum Nitride Surface

Published online by Cambridge University Press:  10 February 2011

M.-I. Baraton
Affiliation:
LMCTS, Faculté des Sciences, 123 Av. A. Thomas, F-87060 Limoges cedex (France), baraton@unilim.fr
X. Chen
Affiliation:
Polymer Science Program at the Institute of Materials Science & Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
K. E. Gonsalves
Affiliation:
Polymer Science Program at the Institute of Materials Science & Department of Chemistry, University of Connecticut, Storrs, CT 06269 (USA)
Get access

Abstract

A nanostructured aluminum nitride powder prepared by sol-gel type chemical synthesis is analyzed by Fourier transform infrared spectrometry. The surface acidic and basic sites are probed out by adsorption of several organic molecules. Resulting from the unavoidable presence of oxygen, the aluminum nitride surface is an oxinitride layer in fact, and its surface chemistry should present some analogies with alumina. Therefore, a thorough comparison between the acido-basicity of aluminum nitride and aluminum oxide is discussed. The remaining nitrogen atoms in the first atomic layer modify the acidity-basicity relative balance and reveals the specificity of the aluminum nitride surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baraton, M.-I., Chen, X. and Gonsalves, K.E., J. Mater. Chem. 6, 1407 (1996).Google Scholar
2. Xiao, T.D., Gonsalves, K.E. and Strutt, P.R., J. Am. Ceram. Soc. 76, 987 (1993);Google Scholar
Xiao, T.D., Gonsalves, K.E., Strutt, P.R., Chow, G.M. and Chen, X., Ceram. Eng. Sci. Proc. 14, 1107 (1993).Google Scholar
3. Baraton, M.-I., Chen, X. and Gonsalves, K.E. in Nanotechnology. edited by Chow, G.-M. and Gonsalves, K.E. (ACS Symp. Series 622, Washington DC, 1996) pp. 312333.Google Scholar
4. Knözinger, H. and Ratnasamy, P., Catal. Rev., Sei. Eng. 17, 31 (1978).Google Scholar
5. Busca, G., Lorenzelli, V., Sanchez-Escribano, V. and Guidetti, R., J. Catal. 131, 167 (1991);Google Scholar
Busca, G., Lorenzelli, V., Ramis, G. and Willey, R.J., Langmuir 9, 1492 (1993).Google Scholar
6. Me Neil, L.E., Grimsditch, M. and French, R.H., J. Am. Ceram. Soc. 76, 1132 (1993).Google Scholar
7. Morterra, C. and Magnacca, G., Catal. Today 27, 497 (1996).Google Scholar
8. Lavalley, J.C., Catal. Today 27, 377 (1996).Google Scholar
9. Knözinger, H., Adv. Catal. 25, 184 (1976).Google Scholar
10. Baraton, M.-I., Chen, X. and Gonsalves, K.E., unpublished results.Google Scholar
11. Binet, C., Jadi, A., Lamotte, J., Lavalley, J.C., J. Chem. Soc, Faraday Trans. 92, 123 (1996).Google Scholar
12. Binet, C., Jadi, A. and Lavalley, J.C., J. Chim. Phys. 89, 31 (1992).Google Scholar
13. Knözinger, H. and Krietenbrink, H., J. Chem. Soc, Faraday Trans. 71, 2421 (1974);Google Scholar
Krietenbrink, H. and Knözinger, H., Z. Phys. Chem. N.F. 102, 43 (1976).Google Scholar
14. Lercher, J.A., Gründling, C. and Eder-Mirth, G., Catal. Today 27, 353 (1996).Google Scholar