Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T05:49:02.189Z Has data issue: false hasContentIssue false

From Langmuir-Blodgett Films to Electroluminescent Devices with an Amphiphilic Phenyl-Ethynylene Oligomer

Published online by Cambridge University Press:  21 March 2011

E. Arias-Marin
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 23 rue du Loess, 67037 Strasbourg, France
J.C. Arnault
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 23 rue du Loess, 67037 Strasbourg, France
T. Maillou
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 23 rue du Loess, 67037 Strasbourg, France
J. Le Moigne
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 23 rue du Loess, 67037 Strasbourg, France
B. Geffroy
Affiliation:
LETI (CEA-Technologies Avancées), CEA Saclay, DEIN-SPE, 91191 Gif-sur-Yvette Cedex, France
A. Lorin
Affiliation:
LETI (CEA-Technologies Avancées), CEA Saclay, DEIN-SPE, 91191 Gif-sur-Yvette Cedex, France
J.M. Nunzi
Affiliation:
LETI (CEA-Technologies Avancées), CEA Saclay, DEIN-SPE, 91191 Gif-sur-Yvette Cedex, France
A. Rosilio
Affiliation:
LETI (CEA-Technologies Avancées), CEA Saclay, DEIN-SPE, 91191 Gif-sur-Yvette Cedex, France
Get access

Abstract

New rigid rods amphiphilic molecules based on phenyl ethynylenes oligomers with hydrophilic side chains were synthesized by step by step method. The two most interesting products, the pentamer and the heptamer are enough amphiphilic to give stable Langmuir films that are able to be deposited as LB film on substrates as hydro-philic glass, ITO or hydrophilic silicon. A good transfer ratio of 1 is observed only by lifting, which suggests a Z type deposited film. A multilayer deposition can be carried out to 36 layers. The well structured films of 3.7 nm thick which are observed by X ray reflectivity suggest a rearragement in Y–type bilayer. By AFM, the observed irregular surface with steps of 3.7 and 1.8 nm high or multiples is coherent with a self-rearrangement of the single deposited layer to a double layer during the drying phase. The heptamer and pentamer show large stokes-shifts with a high photoluminescence emission peak at 516 and 504 nm respectively. LED properties were demonstrated using the ITO/oligoPY/ LiF-Al sandwich yielding photon emission at 516 nm for the heptamer. The electroluminescent device yields in the range of 10−3%. The demonstration of electroluminescence in a LB film of molecules aligned parallel to the substrate is very interesting because it confirms the possibility to tailor conduction and emission properties of the devices using a layer by layer deposition technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kraft, A.; Grimsdale, A.; Holmes, A.; Angew.Chem. Int. Ed., 37, 403, (1998)Google Scholar
2 Tessler, N.; Adv. Mater., 11, 363, (1999)Google Scholar
3 Gelinck, G.; Warman, J.; Remmers, M.; Neher, D.; Chem. Phys. Lett., 265, 320, (1997)Google Scholar
4 Burroughes, J.H.; Bradley, D.C.C.; Brown, A.R.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burns, P.L.; Holmes, A.B.; Nature, 347, 539, (1990)Google Scholar
5 Grem, G.; Leditzky, G., Ullrich, B.; Leising, G., Adv. Mater., 4, 36, (1992)Google Scholar
6 Berggren, M.; Ingan, O.ä; Gustafsson, G.; Rasmusson, J.; Andersson, M.R.; Hjertberg, T.; Wennerström, O., Nature, 372, 444, (1994)Google Scholar
7 Tang, C.W.; Slyke, S.A. Van; Appl. Phys. Lett., 51, 913, (1987)Google Scholar
8 Friend, R.H.; Gymer, R.W.; Holmes, A.B.; Burroughes, J.H.; Marks, R.N.; Taliani, C.; Bradley, D.C.C.; Dos, D.A. Santos; Bredas, J.L.; Lögdlund, M.; Salaneck, W.R.; Nature, 397, 121, (1999)Google Scholar
9 Swanson, L.S.; Shinar, J.; Ding, Y.W.; Barton, T.J.; Synth. Met.; 55, 1, (1993)Google Scholar
10 Wautelet, P.; Moroni, M.; Oswald, L.; Moigne, J. Le; Pham, T.A.; Bigot, J.Y.; Luzzati, S.; Macromolecules, 29, 446, (1996)Google Scholar
11 Weder, C.; Wrighton, M.S.; Macromolecules, 29, 5157, (1996)Google Scholar
12 Yang, J.S.; Swager, T.; J. Am. Chem. Soc.; 21, 5321, (1998)Google Scholar
13 Schumm, J. S.; Pearson, D.; Tour, J.M.; Angew. Chem. Int. Ed. Engl.; 33, 1360, (1994)Google Scholar
14 Le, J. Moigne; Gallani, J.L.; Wautelet, P.; Moroni, M.; Oswald, L.; Cruz, C.; Galerne, Y.; Arnault, J.C.; Duran, R., Garrett, M.; Langmuir, 14, 7484, (1998)Google Scholar
15 Tour, J.; Chem. Rev.; 96, 537, (1996)Google Scholar
16 Pesak, D.J.; Moore, J.S.; Wheat, T.E.; Macromolecules, 30, 6467, (1997)Google Scholar
17 Gautier, E.; Nunzi, J.M.; Sentein, C.; Lorin, A.; Raimond, P.; Synth. Met., 81, 197, (1996)Google Scholar
18 Schumm, J.S.; Pearson, D.L.; Tour, J.M.; Angew. Chem. Int. Ed. Engl, 33, 1360; (1994)Google Scholar
19 Arias-Marin, E., Arnault, J.C., Guillon, D., Maillou, T., Le, J. Moigne, Geffroy, B., Nunzi, J.M.; Langmuir, submitted (1999)Google Scholar