Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T21:55:26.288Z Has data issue: false hasContentIssue false

From Adatom Migration to Chemical Kinetics: Models for MBE, Mombe and MOCVD

Published online by Cambridge University Press:  15 February 2011

D. D. Vvedensky
Affiliation:
Interdisciplinary Research Centre for Semiconductor Materials, Imperial College, London SW7 2BZ, United Kingdom
T. Shitarat
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom Interdisciplinary Research Centre for Semiconductor Materials, Imperial College, London SW7 2BZ, United Kingdom
P. Smilauer
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
T. Kaneko
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
A. Zangwill
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
Get access

Abstract

The application of Monte Carlo simulations to various epitaxial growth methods is examined from the standpoint of incorporating only those kinetics processes that are required to explain experimental data. A basic model for molecular-beam epitaxy (MBE) is first introduced and some of the features that make it suitable for describing atomic-scale processes are pointed out. Extensions of this model for cases where the atomic constituents of the growing surface are delivered in the form of heteroatomic molecules are then considered. The experimental scenarios that is discussed is the homoepitaxy of GaAs(001) using metalorganic molecular-beam epitaxy (MOMBE) with triethylgallium (TEG) and precursors and using MOCVD with trimethylgallium (TMG). For MOMBE, the comparisons between simulations and experiments are based on reflection high-energy electron diffraction intensities, by analogy with comparisons made for MBE, while for metalorganic chemical vapor deposition (MOCVD) the simulations are compared to in situ glancingincidence x-ray scattering measurements. In both of these cases, the inclusion of a second mobile species to represent the precursor together with various rules for the decomposition of this molecule (in terms of rates and local environments) with be shown to provide a useful starting point for explaining the general trends in the experimental data and for further refinements of the model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burton, W.K., Cabrera, N., and Frank, F.C., Phil. Trans. Roy. Soc. London, Sect. A 243, 299 (1951).Google Scholar
2. Madhukar, A. and Ghaisas, S.V., CRC Crit. Rev. Solid State Mater. Sci. 13, 1434 (1987).Google Scholar
3. Shitara, T., Vvedensky, D.D., Wilby, M.R., Zhang, J., Neave, J.H. and Joyce, B.A., Phys. Rev. B 46, 6815 (1992).Google Scholar
4. Ghez, R. and Iyer, S.S., IBM J. Res. Develop. 32, 804 (1988).Google Scholar
5. Myers-Beaghton, A.K. and Vvedensky, D.D., Phys. Rev. A 44, 2457 (1991).Google Scholar
6. Myers-Beaghton, A.K. and Vvedensky, D.D., Phys. Rev. B 42, 5544 (1990).Google Scholar
7. Fuenzalida, V., Phys. Rev. B 44, 10835 (1991).Google Scholar
8. Donnelly, V.M., McCaulley, J.A. and Shul, R.J., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V., Jensen, K.F., Dubois, L.H. and Gross, M.E. (Materials Research Society, Pittsburgh, 1991), pp. 1523.Google Scholar
9. Yu, M.L., Memmert, U., Buchan, N.I. and Kuech, T.F., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V.,Jensen, K.F., Dubois, L.H. and Gross, M.E. (Materials Research Society, Pittsburgh, 1991), pp. 3746.Google Scholar
10. Okuno, Y., Asahi, H., Kaneko, T., Kang, T.W., and Gonda, S., J. Crystal Growth 105, 185 (1990).Google Scholar
11. Kaneko, T., 0. Naji, Jones, T., and Joyce, B.A. J. Crystal Growth 127, 1059 (1993).Google Scholar
12. Mountziaris, T.J. and Jensen, K.F., J. Electrochem. Soc. 138, 2426 (1991).CrossRefGoogle Scholar
13. Bhat, R., Kapon, E., Werner, J., Hwang, D.M., Stoffel, N.G., and Koza, M.A., Appl. Phys. Lett. 56, 863 (1990).Google Scholar
14. Chen, C.S. and Stringfellow, G.B., AppI. Phys. Lett. 59, 324 (1991).Google Scholar
15. Taylor, J.P.G., Hugill, K.J., Vvedensky, D.D., and MacKinnon, A., Phys. Rev. Lett. 67, 2359 (1991).Google Scholar
16. Aspnes, D.E., Bhat, R., Colas, E., Keramidas, V.G., Koza, M.A., and Studna, A.A., J. Vac. Sci. Tech. A7, 711 (1989).Google Scholar
17. Fuoss, P.H., Kisker, D.W., Renaud, G., Tokuda, K.L., Brennan, S., and Kahn, J.L., Phys. Rev. Lett. 63, 2389 (1989).Google Scholar
18. Fuoss, P.H., Kisker, D.W., Lamelas, F.J., Stephenson, G.B., Imperatori, P., and Brennan, S., Phys. Rev. Lett. 69, 2791 (1992).Google Scholar
19. Zangwill, A., Physics at Surfaces (Cambridge University Press, Cambridge, 1988).CrossRefGoogle Scholar
20. Zhdanov, V.P., Elementary Physiochemical Processes on Solid Surfaces(Plenum, New York, 1991).Google Scholar
21. H., J.D. Weeks G.and Gilmer, , Adv. Chem. Phys. 40, 157 (1979).Google Scholar
22. Madhukar, A. and Ghaisas, S.V., CRC Crit. Rev. Sol. State and Mater. Sci. 14 1 (1988).Google Scholar
23. Vvedensky, D.D., Clarke, S., Hugill, K.J., Myers-Beaghton, A.K. and Wilby, M.R., in Kinetics of Ordering and Growth at Surfaces edited by Lagally, M.G. (Plenum, New York, 1990), pp. 297311.Google Scholar
24. Sarma, S. Das, J. Vac. Sci. Technol. A 8, 2714 (1990).Google Scholar
25. Metiu, H., Lu, Y.-T. and Zhang, Z., Science 255, 1088 (1992).Google Scholar
26. Clarke, S. and Vvedensky, D.D., Phys. Rev. Lett. 58, 2235 (1987).Google Scholar
27. Chen, P., Kim, J.Y., Madhukar, A. and Cho, N.M., J. Vac. Sci. Technol. B 4, 890 (1986).Google Scholar
28. Shitara, T., Vvedensky, D.D., Wilby, M.R., Zhang, J., Neave, J.H. and Joyce, B.A., Phys. Rev. B 46, 6825 (1992).Google Scholar
29. Zhang, J., Neave, J.H., Joyce, B.A., Dobson, P.J. and Fawcett, P.N., Surf. Sci. 231, 379 (1990).Google Scholar
30. Shitara, T., Vvedensky, D.D., Neave, J.H. and Joyce, B.A., these proceedings.Google Scholar
31. Sudijono, J., Johnson, M.D., Snyder, C.W., Elowitz, M.B. and Orr, B.G., Phys. Rev. Lett. 69, 2811 (1992).Google Scholar
32. Smilauer, P., Wilby, M.R. and Vvedensky, D.D., these proceedings.Google Scholar
33. Ehrlich, G. and Hudda, F.G., J. Chem. Phys. 44, 1039 (1966).Google Scholar
34. Mo, Y.-W. and Lagally, M.G., Surf. Sci. 248, 313 (1991).Google Scholar
35. Chalmers, S.A., Tsao, J.Y., and Gossard, A.C., Appl. Phys. Lett. 61, 645 (1992).Google Scholar
36. Clarke, S. and Vvedensky, D.D., Phys. Rev. B 37, 6559 (1988).Google Scholar
37. Stoltze, P. and Norskov, J. (unpublished).Google Scholar
38. Shitara, T., Kaneko, T. and Vvedensky, D.D., Bull. Am. Phys. Soc. 35, 670 (1993).Google Scholar
39. Shitara, T., Zhang, J., Neave, J.H. and Joyce, B.A., J. Appl. Phys.71 4299 (1992).Google Scholar
40. Haider, N., Wilby, M.R. and Vvedensky, D.D. (unpublished).Google Scholar
41. Zangwill, A., in Evolution of Surface and Thin Film Microstructure, edited by Atwater, H.A., Grabow, M., Chason, E., and Lagally, M.G. (Materials Research Society, Pittsburgh, PA, in press)Google Scholar