Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-21T02:07:20.088Z Has data issue: false hasContentIssue false

Free-Volume Properties of Amorphous Polymers Probed by Positron Annihilation Spectroscopy

Published online by Cambridge University Press:  16 February 2011

Y. C. Jean
Affiliation:
Department of Chemistry, University of Missouri-Kansas City Kansas City, MO 64110
F. Zandiehnadem
Affiliation:
Department of Chemistry, University of Missouri-Kansas City Kansas City, MO 64110
Q. Deng
Affiliation:
Department of Chemistry, University of Missouri-Kansas City Kansas City, MO 64110
Get access

Abstract

Positron annihilation spectroscopy (PAS) has been developed to characterize the free-volume properties of polymers. Positron annihilation lifetime measurements give direct information about the dimension, content, and hole-size distributions of free-volume in amorphous materials. The angular correlation of positron annihilation radiation measurements give additional information about the shape of the free-volume holes in oriented polymeric materials. The unique capability of PAS to probe free-volume properties is from the fact that positronium atom is preferentially trapped in the atomic-scale holes which have a size ranging from 1 to 10 Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] For example, see Ferry, J.D., “Viscoelastic Properties of Polymers,” 3rd ed. John Wiley & Sons, NY (1980)Google Scholar
[2] Doolittle, A.K., J. Appl. Phys. 22, 1471 (1951)CrossRefGoogle Scholar
[3] Williams, M.L., Landel, R.F., and Ferry, J.D., J. Amer. Chem. Soc. 77, 3701 (1955);Google Scholar
Turnbull, D., and Cohen, M.H., J. Chem. Phys. 34, 120 (1961)Google Scholar
[4] For example, see, “Positron Solid-State Physics,” ed. Brandt, W. and Dupasquier, A., North Holland Pub. Amsterdam (1983)Google Scholar
[5] For example, see “Positron and Positronium Chemistry,” ed. Schrader, D.M. and Jean, Y.C., Elsevier Pub. Amsterdam (1988).Google Scholar
[6] Victor, J.G., and Torkelson, J.M., Macromolecules, 21 3490 (1988)Google Scholar
[7] Yu, W.C., and Sung, C.S.P., Macromolecules, 21, 365 (1988)CrossRefGoogle Scholar
[8] Tanabe, Y., Muller, N., Fischer, E.W., Polym. J. 16, 1445 (1984)Google Scholar
[9] Jean, Y.C., J. Microchem. 42, 72 (1990)Google Scholar
[10] For examples, see O'Conner, D.V., and Phillips, D., “Time Correlated Single Photon Counting”, Acad. Press. N.Y. (1984);Google Scholar
Demas, J.N., “Excited State Lifetime Measurements”, Acad. Press., N.Y. (1983)Google Scholar
[11] Gregory, R.B., and Zhu, Y., Nucl. Inst. Methods in Phys. Res. A290, 172(1990)Google Scholar
[12] Provencher, S.W., Comp. Phys. Comm. 27, 229 (1982)Google Scholar
[13] Kirkegaard, P., Eldrup, M., Mogensen, O.E., and Pedersen, N., Comput. Phys. Commun, 23, 307 (1981); and PATFIT 88 (1989 version)CrossRefGoogle Scholar
[14] Nakanishi, H. and Jean, Y.C., in “Positron and Positronium Chemistry,” ed. Schrader, D.M. and Jean, Y.C., Elsevier Pub. Amsterdam (1988) Chapter 5, p. 159 Google Scholar
[15] Brandt, W., Berko, S., Walker, W.W., Phys. Rev. 120, 1289 (1960)Google Scholar
[16] Nakanishi, H., Jean, Y.C., Smith, E.G. and Sandreczki, T.C., J. Poly. Sci. B, 27, 1419 (1989)CrossRefGoogle Scholar
[17] Roe, R.J., D. Rigby (this proceedings)Google Scholar
[18] Wang, Y.Y., Nakanishi, H., Jean, Y.C., and Sandreczki, T.C. J. Poly. Sci. B, 28, 1431 (1990)Google Scholar
[19] For example see, Stevens, J.R. and Edwards, M.J., J. Polym. Sci. Polym. Lett. Ed. 30 297 (1970)Google Scholar
[20] Jean, Y.C., Sandreczki, T.C., and Ames, D.P., J. Poly. Sci. B, 24, 1247 (1986)CrossRefGoogle Scholar
[21] Boyer, R.F., Rubber Chem. Tech. 36, 1303 (1963)Google Scholar
[22] Sandreczki, T.C., Nakanishi, H., and Jean, Y.C., in “Proc. of Int. Symp. in Positron Annihilation Studies of Fluids,” ed. Sharma, S.C., World Sci. Pub., Singapore (1988) p. 200 Google Scholar
[23] Aklonis, J.J. and Macknight, , “Introduction to Polymer Viscoelasticity,” 2nd Ed. Wiley Interscience Pub. N.Y. (1982)Google Scholar
[24] For example, see Tant, M.R., and Wilkes, G.L., Polym. Eng. Sci. 21, 874 (1981)Google Scholar
[25] Kobayashi, Y., Zheng, W., Meyer, E.F., McGervey, J.D., Jamieson, A.M., and Simha, R., Macromolecules 22, 2302(1989)Google Scholar
[26] Jean, Y.C., Nakanishi, H., Hao, L.Y., and Sandreczki, T.C., Phys. Rev. B, 42, 9705 (1990)Google Scholar
[27] Jean, Y.C., Nucl. Inst. Methods, A (in press)Google Scholar