Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T13:10:29.744Z Has data issue: false hasContentIssue false

Free-standing Diamond Single Crystal Film for Electronics Applications

Published online by Cambridge University Press:  26 February 2011

Jie Yang
Affiliation:
jieyang@hotmail.com, Naval Research Lab. & NOVA research Inc., 1768 Westwind Way, McLean, Virginia, 22012, United States
Weixiao Huang
Affiliation:
huangw2@rpi.edu, Rensselaer Polytechnic Inst., United States
T. P. Chow
Affiliation:
chowt@rpi.edu, Rensselaer Polytechnic Inst., United States
James E. Butler
Affiliation:
james_butler@code6100.nrl.navy.mil, Naval Research Lab., United States
Get access

Abstract

High quality single crystal diamond film is an excellent transparent semiconductor material. Combined with its good electrical, optical, thermal and chemical properties, diamond-based semiconductor devices offer the potential of operation at very high voltages (>10 kV), power levels, and temperatures (>400°C) and under extreme radiation conditions.

In this paper, we exploit the optical transparent property of MPCVD single crystal diamond films to correlate the quality of the epi-layers with the performance of Schottky barrier diodes fabricated on the layer. We used optical microscopy to observe stress induced birefringence caused by defects/dislocations in the material and micro- Raman/photoluminescence to detect relative amounts of non-diamond carbon and color centers (nitrogen and silicon atom complexes with lattice vacancies) in the material. High structural quality (low stress) is correlated with the properties of Schottky barrier diodes fabricated in the material. Vertical devices made from a 20 µm homo-epi-layer have been shown high breakdown fields of 1.85 MVcm-1 (BV = 3.7 kV) and conduction of 0.6 A/cm2 at 20V forward drop at 290 °C. Through device failure analysis, we can conclude that the 1.85 MVcm-1 field is only a lower limit for the material. Local stresses (dislocations) and point defects appear to be the main reasons for the high voltage failure of our single crystal diamond rectifiers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kudo, H., Yanagi, H., Ueda, K. and Kawazoe, H., Appl. Phys. Lett. 75 2851, 1999.Google Scholar
[2] Ohta, H., Kawamura, K. I., Orita, M., Sarukura, N., and Hosono, H., Appl. Phys. Lett. 77 475, 2000.Google Scholar
[3] M, Sze S (ed), Physics of Semiconductor Devices 2nd ed. (New York: Wiley, 1981) p 849.Google Scholar
[4] Geis, M. W., Rathamn, D. D., Ehrlich, D. J., Murphy, R. A., and Lindley, W. T., IEEE Electron Device Lett. 8, 341344 (1987).Google Scholar
[5] Yamanaka, S., Takeuchi, D., Watanabe, H., Okushi, H., and Kajimura, K., Diam. Relat. Mater. 9, 956–9 (2000).Google Scholar
[6] Chow, T. P., Khemka, V., Fedison, J., Ramungul, N., Matocha, K., Langm, Y., and Gutmann, R. J., Solid-State Electron. 44, 277301 (2000).Google Scholar
[7] Yang, J., Huang, W., Chow, T.P., and, Butler, J. E., “High Quality MPCVD Epitaxial Diamond Film for Power Device Application”, MRS 04 Falls meeting, (Oral presentation, Boston, MA, Nov. 28, 2004 and accepted paper of proceedings).Google Scholar
[8] Butler, J. E., Geis, M. W., Krohn, K. E., Lawless, J. Jr, Deneault, S., Lyszczarz, T. M., Flechtner, D. and Wright, R., Semicond. Sci. Technol. 17, 1, 2002.Google Scholar
[9] Twitchen, D. J., Whitehead, A. J., Coe, S. E., Isberg, J., Hammersberg, J., Wikstrom, T., and Johansson, E.. IEEE Transactions on electron devices, vol. 51, 826, 2004.Google Scholar
[10] Huang, W., Chow, T.P., Yang, J. and Butler, J. E., Proceedings Lester Eastman Conference, 2004.Google Scholar
[11] Huang, W., Chow, T.P., Yang, J. and Butler, J. E., “High-Voltage Diamond Vertical Schottky rectifiers”, ISPSD'05, (Oral presentation, CA, May, 2005).Google Scholar
[12] Marchywka, M., Pehrsson, P. E. Jr., Vestyck, D. J., and Moses, D., Appl. Phys. Lett. 63, 3521 (1993).Google Scholar