Skip to main content Accessibility help
×
Home

Free Volume Changes and Crack Tip Deformation in Bulk Metallic Glass Alloys and their Composites

  • Biraja P. Kanungo (a1), Matthew J. Lambert (a1) and Katharine M. Flores (a1)

Abstract

The free volume changes associated with deformation of metallic glasses play an important role in strain localization in shear bands. However the details of these structural changes during inhomogeneous deformation are unclear. In this study, the free volume changes in Cu60Zr30Ti10 and Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glasses were examined and quantified using differential scanning calorimetry following rolling and low temperature annealing. It was found that the height of the endothermic peak associated with the glass transition decreased following deformation whereas annealing resulted in an increase in the peak height. Additionally, the exothermic event associated with structural relaxation prior to the glass transition occurred at a lower temperature after rolling in the Zr-based system. Surprisingly, a similar shift in the onset temperature was not observed in the Cu-based system, suggesting a different structural relaxation mechanism. The Zr-based system was successfully modeled and the results indicated that the free volume increased ∼4% with inhomogeneous deformation and decreased ∼14% with annealing, consistent with expectations. In an effort to further characterize strain localization in shear bands, the development of a crack tip damage zone in a Zr-based bulk metallic glass composite was studied using scanning electron and atomic force microscopy. The first shear band developed at an angle of ∼60° from the crack propagation direction. This is discussed in light of the Mohr-Coulomb yield criterion for metallic glasses. The reinforcement phase arrested the growth of individual shear bands, while accumulated damage resulted in the shear bands cutting through the crystalline phase, ultimately resulting in crack branching and failure.

Copyright

References

Hide All
1. Flores, K.M. and Dauskardt, R.H., Scripta Mater., 41, 937 (1999).
2. Flores, K.M. and Dauskardt, R.H., J. Mater. Res., 14, 638 (1999).
3. Flores, K.M. and Dauskardt, R.H., Acta Mater., 49, 2527 (2001).
4. Suh, D. and Dauskardt, R.H., J. Mater. Res., 17, 1254 (2002).
5. Gilbert, C.J., Ritchie, R.O., and Johnson, W.L., App. Phys. Let., 71, 476 (1997).
6. Gilbert, C.J., Lippmann, J.M., and Ritchie, R.O., Scripta Mater., 38, 537 (1998).
7. Gilbert, C.J., Schroeder, V., and Ritchie, R.O., Met. Trans. A, 30A, 1739 (1999).
8. Hufnagel, T.C., El-Deiry, P., and Vinci, R.P., Scripta Mater., 43, 1071 (2000).
9. Wright, W.J., Hufnagel, T.C., and Nix, W.D., J. App. Phys., 93, 1432 (2003).
10. Wright, W.J., Saha, R., and Nix, W.D., Materials Transactions - JIM, 42, 642 (2001).
11. Zhang, Z.F., Eckert, J., and Schultz, L., Acta Mater., 51, 1167 (2003).
12. Schuh, C.A. and Nieh, T.G., Acta Mater., 51, 87 (2003).
13. Conner, R.D., Johnson, W.L., Paton, N.E., and Nix, W.D., J. App. Phys., 94, 904 (2003).
14. Argon, A.S., Acta Metall., 27, 47 (1979).
15. Spaepen, F., Acta Metall., 25, 407 (1977).
16. Steif, P.S., Spaepen, F., and Hutchinson, J.W., Acta Metall., 30, 447 (1982).
17. Flores, K.M. and Dauskardt, R.H., Mater. Sci. Eng. A, A319–321, 511 (2001).
18. Conner, R.D., Dandliker, R.B., and Johnson, W.L., Acta Mater., 46, 6089 (1998).
19. Choi-Yim, H., Busch, R., Koster, U., and Johnson, W.L., Acta Mater., 47, 2455 (1999).
20. Hays, C.C., Kim, C.P., and Johnson, W.L., Phys. Rev. Let., 84, 2901 (2000).
21. Kato, H., Hirano, T., Matsuo, A., Kawamura, Y., and Inoue, A., Scripta Mater., 43, 503 (2000).
22. Fan, C., Ott, R.T., and Hufnagel, T.C., App. Phys. Let., 81, 1020 (2002).
23. Bian, Z., P.M.X., , Zhang, Y., and Wang, W.H., App. Phys. Let., 81, 4739 (2002).
24. Ma, H., Xu, J., and Ma, E., App. Phys. Let., 83, 2793 (2003).
25. van den Beukel, A. and Sietsma, J., Acta Metall. Mater., 38, 383 (1990).
26. Tuinstra, P., Duine, P.A., Sietsma, J., and Beukel, A.v.d., Acta Metall. Mater., 43, 2815 (1995).
27. Daniel, B.S.S., Reger-Leonhard, A., Heilmaier, M., Eckert, J., and Schultz, L., Mechanics of Time-Dependent Materials, 6, 193 (2002).
28. Hammond, V.H., Houtz, M.D., and O'Reilly, J.M., J. Non-Cryst. Sol., 325, 179 (2003).
29. Slipenyuk, A. and Eckert, J., Scripta Mater., 50, 39 (2004).
30. De Hey, P., Sietsma, J., and van den Beukel, A., Acta Mater., 46, 5873 (1998).
31. Tsao, S.S. and Spaepen, F., Acta Metall., 33, 881 (1985).
32. Duine, P.A., Sietsma, J., and van den Beukel, A., Acta Metall. Mater., 40, 743 (1992).
33. Szuecs, F., Kim, C.P., and Johnson, W.L., Acta Mater., 49, 1507 (2001).
34. Hays, C.C., Schroers, J., Geyer, U., Bossuyt, S., Stein, N., and Johnson, W.L., Materials Science Forum, 343–346, 103 (2000).
35. Bakke, E., Busch, R., and Johnson, W.L., App. Phys. Let., 67, 3260 (1995).
36. Waniuk, T.A., Busch, R., Masuhr, A., and Johnson, W.L., Acta Mater., 46, 5229 (1998).
37. Wen, P., Tang, M.B., Pan, M.X., Zhao, D.Q., Zhang, Z., and Wang, W.H., Phys. Rev. B, 67, 212201 (2003).
38. Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Acta Mater., 49, 2645 (2001).
39. Flores, K.M., Johnson, W.L., and Dauskardt, R.H., Scripta Mater., 49, 1181 (2003).
40. Alpas, A.T., Edwards, L., and Reid, C.N., Met. Trans. A, 20A, 1395 (1989).
41. Kanungo, B.P., Glade, S.C., Asoka-Kumar, P., and Flores, K.M., Intermet., in review (2003).
42. Bruck, H.A., Christman, T., Rosakis, A.J., and Johnson, W.L., Scripta Metall. Mater., 30, 429 (1994).
43. Schneibel, J.H., Horton, J.A., and Munroe, P.R., Met. Trans. A, 32A, 2819 (2001).

Free Volume Changes and Crack Tip Deformation in Bulk Metallic Glass Alloys and their Composites

  • Biraja P. Kanungo (a1), Matthew J. Lambert (a1) and Katharine M. Flores (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed