Skip to main content Accessibility help

Framework Stoichiometry and Electrical Conductivity of Si-Ge Based Structure-I Clathrates

  • Ganesh K. Ramachandran (a1), Paul F. McMillan (a1) (a2), Jianjun Dong (a3), Jan Gryko (a4) and Otto F. Sankey (a3)...


We report the synthesis and structural characterization of two Structure I clathrates in the KSi and Rb-Si systems. The alkali-Si clathrates are fully stoichiometric at the framework sites, i.e., devoid of framework vacancies. This is in sharp contrast to the analogous K-Ge, Rb-Ge and Rb-Sn, Cs-Sn systems, where vacancies are formed at one-third of the crystallographic 6c tetrahedral sites. This is rationalized in terms of Zintl-Klemm rules to remove the tetrahedral atom of its hypervalency. The contrasting behavior is understood in terms of weaker Tt-Tt (Tt – tetrelide, Si, Ge, Sn) bonding as one descends the periodic table, and results in poorly metallic conductivities for vacancy-free K7Si46 and Rb6Si46, but semiconducting behavior of K8Ge44. The observation suggests tuning of the electronic properties of Tt clathrates by substitution of (Si,Ge,Sn) on framework sites, for thermoelectric applications. We describe preliminary results designed to synthesize “mixed” Si-Ge clathrate structures. Thermal decomposition of K2SiGe results in formation of a Structure I clathrate with mixing of Si and Ge on framework sites. The lattice constant ao = 10.523(6) Å, is intermediate between those of K8Si46 and K8Ge44.



Hide All
1. Cros, C., Pouchard, M. and Hagenmuller, P., J. Solid State Chem. 2, 570 (1970);
Kasper, J. S., Hagenmuller, P., Pouchard, M. and Cros, C., Science 150, 1713 (1965)
2. Adams, G. B., O'Keeffe, M., Demkov, A. A., Sankey, O. F. and Huang, Y., Phys. Rev. B 49, 8048 (1994);
O'Keeffe, M., Adams, G. B. and Sankey, O. F., Phil. Mag. Letts. 78, 21 (1998)
3. Slack, G. A., Mat. Res. Soc. Symp. Proc. 478, 47 (1997)
4. Nolas, G., Cohn, J. L., Slack, G. A. and Schujman, S. B., Appl. Phys. Lett. 73, 178 (1998)
5. Cohn, J. L., Nolas, G. S., Fessatidis, V., Metcalf, T. H. and Slack, G. A., Phys Rev Lett. 82, 779 (1999)
6. Shujman, S. B., Nolas, G. S., Young, R. A., Lind, C., Wilkinson, A. P., Slack, G. A., Patschke, R., Kanatzidis, M. G., Ulutagay, M. and Hwu, S-J., J. Appl. Phys. 87, 1529 (2000);
Iversen, B. B., Palmqvist, A. E. C., Cox, D. E., Nolas, G. S., Stucky, G. D., Blake, N. P. and Metiu, H., J. Solid State Chem. 149, 455 (2000);
Chakoumakos, B. C., Sales, B. C., Mandrus, D. G. and Nolas, G. S., J. Alloys Comp. 296, 80 (2000)
7. Chemistry, Structure and Bonding of Zintl Phases and Ions, ed. Kauzlarich, Susan M., (VCH Publishers, NY, 1996
8. von Schnering, H. G., Nova Acta Leopoldina 59, 168 (1985);
Zhao, J-T. and Corbett, J. D., Inorg. Chem. 33, 5721 (1994)
9. Ramachandran, G. K., McMillan, P. F., Diefenbacher, J., Gryko, J., Dong, J. and Sankey, O. F., Phys. Rev. B 60, 12294 (1999);
Shimizu, , Maniwa, Y., Kume, K., Kawaji, H., Yamanaka, S. and Ishikawa, M., Phys. Rev. B 54, 13242 (1996);
Yamanaka, S., Enishi, E., Fukuoka, H. and Yasukawa, M., Inorg. Chem. 39, 56 (2000)
10. Eisenmann, B., Schafer, H., and Zagler, R., J. Less-Comm. Metals 118, 43 (1986);
Cordier, G., and Woll, P., J. Less-Comm. Metals 169, 291 (1991)
11. Chu, T. L., Chu, S. S., Ray, R. L., J. Appl. Phys. 53, 7102 (1982);
Shatruk, M. M., Kovnir, K. A., Shevelkov, A. V., Presniakov, I. A., Popovkin, B. A., Inorg. Chem. 38, 3455 (1999)
12. Bobev, S., and Sevov, S. C., J. Am. Chem. Soc. 121, 3795 (1999)
13. Witte, J. and Schnering, H. G., Z. Anorg. Chem. 327, 260 (1964);
Busmann, E., Z. Anorg. Chem. 313, 90 (1961).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed