Skip to main content Accessibility help
×
Home

Fracture Toughness of Silicate Glasses: Insights from Molecular Dynamics Simulations

  • Yingtian Yu (a1), Bu Wang (a1), Young Jea Lee (a1) and Mathieu Bauchy (a1)

Abstract

Understanding, predicting and eventually improving the resistance to fracture of silicate materials is of primary importance to design new glasses that would be tougher, while retaining their transparency. However, the atomic mechanism of the fracture in amorphous silicate materials is still a topic of debate. In particular, there is some controversy about the existence of ductility at the nano-scale during the crack propagation. Here, we present simulations of the fracture of three archetypical silicate glasses using molecular dynamics. We show that the methodology that is used provide realistic values of fracture energy and toughness. In addition, the simulations clearly suggest that silicate glasses can show different degrees of ductility, depending on their composition.

Copyright

References

Hide All
[1] Shi, Y., Luo, J., Yuan, F., and Huang, L., Journal of Applied Physics 115, 043528 (2014).
[2] Mauro, J. C. and Zanotto, E. D., International Journal of Applied Glass Science 5, 313 (2014).
[3] Wondraczek, L., Mauro, J. C., Eckert, J., Kühn, U., Horbach, J., Deubener, J., and Rouxel, T., Advanced Materials 23, 4578 4 (2011).
[4] Mauro, J. C., Glass Science 1, 20 (2014).
[5] Hofmann, D. C., Suh, J.-Y., Wiest, A., Duan, G., Lind, M.-L., Demetriou, M. D., and Johnson, W. L., Nature 451, 1085 (2008).
[6] Mirkhalaf, M., Dastjerdi, A. K., and Barthelat, F., Nature Communications 5 (2014).
[7] Narayanaswamy, O. S., Journal of the American Ceramic Society 61, 146 (1978).
[8] Lawn, B. R., Hockey, B. J., and Wiederhorn, S. M., Journal of Materials Science 15, 1207 (1980).
[9] Celarie, F., Prades, S., Bonamy, D., Ferrero, L., Bouchaud, E., Guillot, C., and Marliere, C., Physical Review Letters 90, 075504 (2003).
[10] Pezzotti, G. and Leto, A., Physical Review Letters 103, 175501 (2009).
[11] Guin, J.-P. and Wiederhorn, S. M., Physical Review Letters 92, 215502 (2004).
[12] Brochard, L., Hantal, G., Laubie, H., Ulm, F., and Pellenq, R., in Poromechanics V (American Society of Civil Engineers, 2013).
[13] Grimley, D. I., Wright, A. C., and Sinclair, R. N., Journal of Non-Crystalline Solids 119, 49 (1990).
[14] Wright, A. C., Clare, A. G., Bachra, B., Sinclair, R. N., Hannon, A. C., and Vessal, B., Transactions of the American Crystallographic Association 27, 239 (1991).
[15] Cormier, L., Neuville, D. R., and Calas, G., Journal of Non-Crystalline Solids 274, 110 (2000).
[16] Ganster, P., Benoit, M., Kob, W., and Delaye, J.-M., Journal of Chemical Physics 120, 10172 (2004).
[17] Vollmayr, K., Kob, W., and Binder, K., Physical Review B 54, 15808 (1996).
[18] Roder, A., Kob, W., and Binder, K., Journal of Chemical Physics 114, 7602 (2001).
[19] Yuan, F. and Huang, L., Scientific Reports 4 (2014).
[20] Cormack, A. N., Du, J., and Zeitler, T. R., Physical Chemistry Chemical Physics 4, 3193 (2002).
[21] Du, J. and Cormack, A., Journal of Non-Crystalline Solids 349, 66 (2004).
[22] Bauchy, M. and Micoulaut, M., Physical Review B 83, 184118 (2011).
[23] Bauchy, M., Journal of Chemical Physics 137, 044510 (2012).
[24] Bauchy, M., Guillot, B., Micoulaut, M., and Sator, N., Chemical Geology 346, 47 (2013).
[25] Pedone, A., Malavasi, G., Cormack, A. N., Segre, U., and Menziani, M. C., Chemistry of Materials 19, 3144 (2007).
[26] Matsui, M., Physics and Chemistry of Minerals 23, 345 (1996).
[27] Bouhadja, M., Jakse, N., and Pasturel, A., Journal of Chemical Physics 138, 224510 (2013).
[28] Jakse, N., Bouhadja, M., Kozaily, J., Drewitt, J. W. E., Hennet, L., Neuville, D. R., Fischer, H. E., Cristiglio, V., and Pasturel, A., Applied Physics Letters 101, 201903 (2012).
[29] Bauchy, M., Journal of Chemical Physics 141, 024507 (2014).
[30] Plimpton, S., Journal Of Computational Physics 117, 1 (1995).
[31] Wright, A. C., Journal of Non-Crystalline Solids 106, 1 (1988).
[32] Du, J. and Corrales, L. R., Journal of Non-Crystalline Solids 352, 3255 (2006).
[33] Sears, V. F., Neutron News 3, 26 (1992).
[34] Yuan, X. and Cormack, A. N., Journal of Non-Crystalline Solids 283, 69 (2001).
[35] Horbach, J., Kob, W., and Binder, K., Chemical Geology 174, 87 (2001).
[36] Du, J. and Corrales, L. R., Physical Review B 72, 092201 (2005).
[37] Wright, A. C., Journal of Non-Crystalline Solids 159, 264 (1993).
[38] Griffith, A. A., Philosophical Transactions of the Royal Society of London. Series A 221, 163 (1921).
[39] Leblond, J.-B., Mécanique De La Rupture Fragile Et Ductile (Paris, 2003).
[40] Anderson, T. L., Fracture Mechanics: Fundamentals and Applications .
[41] Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, Oxford science publications .
[42] Nosé, S., Molecular Physics 52, 255 (1984).
[43] Hoover, W. G., Physical Review A 31, 1695 (1985).
[44] Irwin, G. R., Fracture in Handbuch der Physik, vol. V (1958).
[45] Sih, G. C., Paris, P., and Irwin, G., International Journal of Fracture Mechanics 1, 189 (1965).
[46] Dugdale, D., Journal of the Mechanics and Physics of Solids 8, 100 (1960).
[47] Barenblatt, G., Advances in Applied Mechanics 7, 104 (1962).
[48] Lemm, J. M., Advances in Applied Mechanics 7, 340 (1962).
[49] Wiederhorn, S. M., Journal of the American Ceramic Society 52, 99 (1969).
[50] Kennedy, C., Rindone, G., and Bradt, R., American Ceramic Society Bulletin 52, 389 (1973).
[51] Eagan, R. J. and Swearekgen, J. C., Journal of the American Ceramic Society 61, 27 (1978).

Keywords

Fracture Toughness of Silicate Glasses: Insights from Molecular Dynamics Simulations

  • Yingtian Yu (a1), Bu Wang (a1), Young Jea Lee (a1) and Mathieu Bauchy (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed