Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-10T18:57:24.624Z Has data issue: false hasContentIssue false

Fracture patterns in thin films and multilayers

Published online by Cambridge University Press:  01 February 2011

Alex A. Volinsky
Affiliation:
University of South Florida, Department of Mechanical Engineering, Tampa FL 33620USA, Volinsky@eng.usf.edu
Dirk C. Meyer
Affiliation:
Institut für Strukturphysik, Fachrichtung Physik der Technischen Universität, D–01062 Dresden, Germany
Tilmann Leisegang
Affiliation:
Institut für Strukturphysik, Fachrichtung Physik der Technischen Universität, D–01062 Dresden, Germany
Peter Paufler
Affiliation:
Institut für Strukturphysik, Fachrichtung Physik der Technischen Universität, D–01062 Dresden, Germany
Get access

Abstract

While there are many stress relief mechanisms observed in thin films, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress a network of through-thickness cracks forms in the film. In the case of compressive stress thin film buckling is observed in the form of blisters. Thin film delamination is an inseparable phenomenon of buckling. The buckling delamination blisters can be either circular, straight, or form periodic buckling patterns commonly known as telephone cord delamination morphology.

While excessive biaxial residual stress is the key for causing thin film fracture, either in tension, or compression, it is the influence of the external stress that can control the final fracture pattern. In this paper we consider phone cord buckling delamination observed in compressed W/Si and TiWN/GaAs thin film systems, as well as spiral and sinusoidal though-thickness cracks observed in Mo/Si multilayers under 3-point high-temperature bending in tension.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stoney, G.G., Proc. Roy. Soc. Lond. A82, 72 (1909)Google Scholar
2. Thouless, M.D., J. Vac. Sci. Technol. A 9(4), 25102515 (1991)Google Scholar
3. Hutchinson, J.W.; Suo, Z., Advances in Applied Mechanics 29, 63191 (1992)Google Scholar
4. Beuth, J.L., Int. J. Solids Struct. 29, 1657 (1992)Google Scholar
5. Malzbender, J., de With, G., Thin Solid films 359, 210214 (2000)Google Scholar
6. Groisman, A., Kaplan, E., Europhys. Lett. 25(6), 415420 (1994)Google Scholar
7. Volinsky, A.A. and Gerberich, W.W., Microelectronic Engineering 69/2–4, 519527 (2003)Google Scholar
8. Shorlin, K.A., de Bruyn, J. R., Phys. Rev. E 61(6), 6950 (2000)Google Scholar
9. Skjeltorp, A.T., Meakin, P., Lett. to Nature 335, 424 (1988)Google Scholar
10. Thouless, M.D., J. Am. Ceram. Soc. 73, 2144 (1990)Google Scholar
11. Bai, T., Pollard, D.D., Gao, H., Lett. to Nature 403, 753 (2000)Google Scholar
12. Huang, R., Prevost, J.H, Huang, Z.Y., Suo, Z., Eng. Fract. Mech. 70, 2513 (2003)Google Scholar
13. Neda, Z., Leung, K.-t., Jozsa, L., Ravasz, M., Phys Rev. Lett. 88(9), 95502 (2002)Google Scholar
14. Argon, A., Proc. Roy. Soc. A250, 472481 (1959)Google Scholar
15. Xia, Z.C., Hutchinson, J.W., J. Mech. Phys. Solids 48, 11071131 (2000)Google Scholar
16. Meyer, D.C., Leisegang, T., Levin, A.A., Paufler, P., Volinsky, A.A., Appl. Phys. A 78, 303305 (2004)Google Scholar
17. Yuse, A., Sano, M., Nature 362, 329 (1993)Google Scholar
18. Cotterell, B., Chen, Z., Int. J. of Fractrure, 104, 169 (2000)Google Scholar
19. Volinsky, A.A., Moody, N.R., Gerberich, W.W., Acta Mater. 50(3), 441 (2002)Google Scholar
20. Volinsky, A.A., Moody, N.R., Kottke, M.L., Gerberich, W.W., Philosophical Magazine A, 82 (2002)Google Scholar
21. Matuda, N., Baba, S., Kinbara, A., Thin Solid Films 81, 301 (1981)Google Scholar
22. Gille, G., Rau, B., Thin Solid films 120, 109 (1984)Google Scholar
23. Seth, J., Raghunath, R., Babu, S.V., J. Vac. Sci. Technol. A 10(2) (1992)Google Scholar
24. Moon, M.-W., Jensen, H.M., Hutchinson, J.W., Oh, K.H., Evans, A.G., J. Mech. Phys Solids, 50(11), 2355 (2002)Google Scholar
25. Volinsky, A.A., Mat. Res. Soc. Symp. Proc. 749, W10.7 (2003)Google Scholar
27. Liang, J., Huang, R., Yin, H., Sturm, J.C., Hobart, K.D., Suo, Z., Acta Mater. 50, 2933 (2002)Google Scholar
28. Volinsky, A.A., et. al., to be publishedGoogle Scholar