Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-10T02:24:18.812Z Has data issue: false hasContentIssue false

Fracture in Silicon Nitride and Alumina thin Films: a Molecular Dynamics Study

Published online by Cambridge University Press:  10 February 2011

Timothy J. Campbell
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics and Astronomy Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 campbell@rouge.phys.lsu.edu http://www.cclms.lsu.edu
Aiichiro Nakano
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics and Astronomy Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 campbell@rouge.phys.lsu.edu http://www.cclms.lsu.edu
Andrey Omeltchenko
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics and Astronomy Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 campbell@rouge.phys.lsu.edu http://www.cclms.lsu.edu
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics and Astronomy Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 campbell@rouge.phys.lsu.edu http://www.cclms.lsu.edu
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics and Astronomy Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 campbell@rouge.phys.lsu.edu http://www.cclms.lsu.edu
Get access

Abstract

Fracture in thin films of silicon nitride and alumina is investigated with large-scale multiresolution molecular-dynamics (MD) simulations on parallel computers. The simulations for alumina include dynamic charge transfer effects based on electronegativity equalization. Results for structural and dynamic correlations and the effects of temperature and orientation of film on fracture dynamics and morphology of fracture surfaces are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Polla, D. L. and Francis, L. F., MRS Bulletin, 21, 59 (July 1996)Google Scholar
2 Nakamura, S., Senoh, M., and Kiyoku, H., Appl. Phys. Lett. 69, 3034 (1996).Google Scholar
3 Khantha, M., Pope, D. P., and Vitek, V., Phys. Rev. Lett. 73, 684 (1994).Google Scholar
4 Rundle, J. B. and Klein, W., Phys. Rev. Lett. 63, 171 (1989).Google Scholar
5 Nakano, A., Kalia, R. K., and Vashishta, P., Phys. Rev. Lett. 75, 3138 (1995); P. Vashishta, R. K. Kalia, and I. Ebbsjö, Phys. Rev. Lett. 75, 858 (1995); C.-K. Loong, P. Vashishta, R. K. Kalia, and I. Ebbsjö, Europhys. Lett. 31, 201 (1995).Google Scholar
6 Streitz, F. H. and Mintmire, J. W., Phys. Rev. B 50, 11,996 (1994)Google Scholar
7 Sanderson, R. T., Chemical Bonds and Bond Energy. Academic Press, New York, 1976.Google Scholar
7 Rick, Steven W., Stuart, Steven J., and Berne, B. J., J. Chem. Phys. 101, 6141 (1994)Google Scholar
8 Tuckerman, M. and Berne, B. J., J. Chem. Phys. 97, 1990 (1992)Google Scholar
9 de Leeuw, S. W. and Thorpe, M. F., Phys. Rev. Lett. 55, 2879 (1985).Google Scholar
10 Loong, C.-K., private communication.Google Scholar
11 Barker, A. S., Phys. Rev. 132, 1474 (1963).Google Scholar