Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T21:17:35.665Z Has data issue: false hasContentIssue false

Fracture and Fatigue Behavior in Nb3Al+ Nb Intermetallic Composites

Published online by Cambridge University Press:  15 February 2011

L. Murugesh
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720.
K. T. Venkateswara
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720.
L. C. DeJonghe
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720.
R. O. Ritchie
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720.
Get access

Abstract

Model high-melting point Nb3Al + Nb intermetallic composites have been fabricated in situ by vacuum hot pressing and reaction sintering elemental powders mixed in the ratio Nb + 7wt. % Al. In both cases, microstructures feature islands of ductile Nb solid solution (∼20 vol. %) in a brittle Nb3Al intermetallic matrix. Thermal treatment for 24 h at 1800°C results in a lamellar microstructure containing a uniform and fine distribution of filamentary Nb in a Nb3Al matrix following the massive peritectic transformation. In this paper, the fatigue and fracture resistance of these two microstructures are examined and compared to pure Nb3Al and Nb. Preliminary results suggest that the Nb phase can provide significant toughening to Nb3Al via crack bridging, plastic stretching and interfacial debonding mechanisms. Measured plane-strain fracture toughness values for the as hot-pressed and fully-aged microstructures are ∼6–8 Mpa√m compared to √fm for pure Nb3Al. However, under cyclic loading, the composites tend to show a strong dependence on applied stress-intensity level; fatigue thresholds range between 2–3 Mpa√m.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stephens, J. J., J. Metals 42 (8), 22 (1990).Google Scholar
2. Anton, D. L., Shah, D. M., DuhI, D. N. and Giamei, A. F., J. Metals 41, 12 (1989).Google Scholar
3. Anton, D. L. and Shah, D. M., in Hich Temperature Structural Intermetallic Comriounds, edited by Liu, C. T. et al. (Materials Research Society, Pittsburgh, PA, 1989), p. 361.Google Scholar
4. Liu, C. T. and Stiegler, J. O., Science 226, 636 (1984).CrossRefGoogle Scholar
5. Schulson, E. M., Int. J. Powder Met. 23 (1), 25 (1987).Google Scholar
6. Baker, I. and Munroe, P. R., J. Metals 40 (2), 28 (1988).Google Scholar
7. Lundin, C. E. and Yamamoto, A. S., Trans. Met. Soc. AIME 23, 863 (1966).Google Scholar
8. Kohot, L., Horyn, R. and Iliev, N., J. Less Common Met. 44, 215 (1976).Google Scholar
9. Jorda, L., Flukinger, R. and Miller, J., I. Less Common Met. 75, 227 (1980).CrossRefGoogle Scholar
10. Rao, K. T. Venkateswara, Murugesh, L., DeJonghe, L. C. and Ritchie, R. O., “Micromechanisms of Monotonic and Cyclic Subcritical Crack Growth in Advanced High Melting Point Low-Ductility Intermetallics”, Report No. UCB/R/91/A1072 to AFOSR, May 1991 (unpublished).Google Scholar
11. Murugesh, L., Rao, K. T. Venkateswara, DeJonghe, L. C. and Ritchie, R. O., in Developments in Ceramic and Metal-Matrix Composites, edited by Upadhya, K. (TMS, Warrendale, PA, 1991), p. 65.Google Scholar
12. Hong, M. and Morris, J. W., J. Appl. Phys. Lett. 37 (11), 1044 (1980).Google Scholar
13. Ashby, M. F., Blunt, F. J. and Bannister, M., Acta Metall. 37, 1847 (1989).CrossRefGoogle Scholar
14. Dbve, H. E., Evans, A. G., Odette, G. R., Mehrabian, R., Emiliani, M. L. and Hecht, R. J., Acts Metall. Mater. 38, 1491 (1990).Google Scholar
15. Odette, G. R., Dève, H. E., Elliott, C. K., Hasigawa, A. and Lucas, G. E., in Interfaces in Ceramic Metal Composites, edited by Arsenault, R. J. et al., Fishman (TMS-AIME, Warrendale, PA, 1990), p. 443.Google Scholar
16. Cao, H. C., Dalgleish, B. J., Dove, H. E., Elliott, C., Evans, A. G., Mehrabian, R. and Odette, G. R., Acta Metall. 37, 2969 (1989).CrossRefGoogle Scholar
17. Ritchie, R. O., Int. Met. Rev. 20, 205 (1979).Google Scholar
18. Fariabi, S., Collins, A. L. W. and Salama, K., Metall. Trans. A 14A, 701 (1983).Google Scholar