Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-22T05:55:45.387Z Has data issue: false hasContentIssue false

Fourier Transform Infrared Spectroscopy Characterization of AlN Thin Films Grown on Sacrificial Silicon Oxide Layers via Metal Organic Vapor Phase Expitaxy

Published online by Cambridge University Press:  31 January 2011

Sridhar Kuchibhatla
Affiliation:
sridhar.kuchibhatla@gmail.com, West Virginia University, Lane Department of Computer Science and Electrical Engineering, PO BOX 6109, Morgantown, West Virginia, 26506, United States
L.E. Rodak
Affiliation:
lrodak@mix.wvu.edu, West Virginia University, Lane Dept. of Computer Science and Electrical Engineering, PO Box 6109, Morgantown, West Virginia, 26506, United States
D Korakakis
Affiliation:
Dimitris.Korakakis@mail.wvu.edu, West Virginia University, Lane Department of Computer Science and Electrical Engineering, Morgantown, West Virginia, United States
Get access

Abstract

Aluminum Nitride (AlN) films were grown using Metal Organic Vapor Phase Epitaxy (MOVPE) techniques on Si (111) substrates patterned with SiOx stripes and the vibrational properties of these films were investigated by Fourier transform infrared (FTIR) techniques. The grown films contained a predominantly wurtzite AlN phase in addition to oxidized aluminum and mixed AlN phases. The AlN film on amorphous silicon oxide (SiOx) was prone to corrosion when subjected to wet etching in buffered hydrofluoric acid solution thereby changing the material properties of the AlN film on SiOx. The etching process significantly reduced the oxidized aluminum phase and mixed AlN phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cimalla, V. Pezoldt, J. Ambacher, O. J. Phys. D: Appl. Phys. 40 (2007) 63866434.Google Scholar
[2] Turner, R.C. Fuierer, P.A. Newnham, R.E. Shrout, T.R. Appl. Acoust. 41 (1994) 299324.Google Scholar
[3] Iborra, E. Olivares, J. Clement, M. Vergara, L. Sanz-Hervas, A., Sangrador, J. Sens. Actuator. A115 (2-3) (2004) 501507.Google Scholar
[4] Olivares, J. Clement, M. Iborra, M. Vergara, E. Sánchez-Rojas, L., Vázquez, J.L., Sanz, P. Proc. SPIE – The Internatl. Soc. Opt. Engg, Smart. Sens, Actuator and MEMS II, 5836 (2005) 1626.Google Scholar
[5] Katona, T. Cantu, P. Keller, S. Wu, Y. Speck, J. DenBaars, S. Appl. Phys. Lett. 84 (2004) 50255027.Google Scholar
[6] Tanaka, S. Kawaguchi, Y. Yamada, K. Sawaki, N. Hibino, M. Hiramatsu, K. Proc. Internatl Workshop on Nitride. Semi (2000) 300–3.Google Scholar
[7] Rodak, L.E. Kuchibhatla, Sridhar, Korakakis, D. Mater. Lett. 63 (2009) 15711573.Google Scholar
[8] Kato, Y. Kitamura, S. Hiramatsu, K. Sawaki, N. J. Crys. Growth 144 (1994) 133–40.Google Scholar
[9] Prokofyeva, T. Seon, M. Vanbuskirk, J. Holtz, M. Nikishin, S.A. Faleev, N.N. Temkin, H. Zollner, S. Phys. Rev. B63 (2001) 125313–1-7Google Scholar
[10] Ibanez, J. Hernandez, S. Alarcon-Llado, E., Cusco, R. Artus, L. Novikov, S.V. Foxon, C.T. Calleja, E. J. Appl. Phys. 104 (2008) 033544–1-7.Google Scholar
[11] Chowdhuri, A.R. Takoudis, C. G. Klie, R. F. Browning, N. D. Appl. Phys. Lett. 80 (2002) 4241.Google Scholar
[12] Sanz-Hervas, A., Iborra, E. Clement, M. Sangrador, J. Aguilar, M. Diam. Rela. Mater. 12 (2003) 1186–9.Google Scholar
[13] Lebedev, V. Kaiser, U. Foerster, C. Pezoldt, J. Biskupek, J. Ambacher, O. J. Appl. Phys. 97 (2005) 114306–1-6.Google Scholar
[14] Iborra, E. Clement, M. Vergara, L. Sanz-Hervas, A., Olivares, J. Sangrador, J. Appl. Phys. Lett. 88 (2006) 231901–1-3.Google Scholar
[15] Akiyama, M. Kamohara, T. Kano, K. Teshigahara, A. Kawahara, N. App. Phys. Lett. 93 (2008) 021903–1-3.Google Scholar