Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T16:55:08.773Z Has data issue: false hasContentIssue false

Formation of Nanostructures in Silicon by Nanosecond-Pulsed Laser Irradiation

Published online by Cambridge University Press:  17 March 2011

J. D. Fowlkes
Affiliation:
Dept. of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2200
A. J. Pedraza
Affiliation:
Dept. of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2200
S. Jesse
Affiliation:
Dept. of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2200
C. M. Rouleau
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056
D. A. Blom
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6064
Get access

Abstract

Silicon nanoparticles are formed during pulsed laser ablation under a background atmosphere of Ar gas. In this paper we have characterized the nanoparticles that are backscattered via collisions in the gas phase and redeposited on the target surface. Clustering in an O2/Ar gas atmosphere resulted in the formation of unique nanostructures that photoluminesce in the violet and blue-green portions of the electromagnetic spectrum. Ablating a (001) Si target in the presence of ultra-high purity (UHP) argon produced Si nanoparticles outside the irradiated region. The mean diameter of these particles decreases from 50 nm to 5 nm with increasing distance from the laser spot. The nanoparticle distribution can be induced to self-organize in linear arrays by simultaneously irradiating the nanoparticles as they deposit.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
2. Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991)Google Scholar
3. Makimura, T., Kunii, Y., and Murakami, K., Jpn. J. Appl. Phys. 35, Part 1, No. 9A, 4780 (1996)Google Scholar
4. Lowndes, D.H., Rouleau, C. M., Thundat, T. G., Duscher, G., Kenik, E. A., and Pennycook, S. J., J. Mater. Res. 14, No. 2, 359 (1999)Google Scholar
5. Patrone, L., Nelson, D., Safarov, V. I., Giorgio, S., Sentis, M., and Marine, W., Appl. Phys. A 69 [Suppl.[, S217 (1999)Google Scholar
6. Makino, T., Suzuki, N., Yamada, Y., Yoshida, T., Seto, T., and Aya, N., Appl. Phys. A 69 [Suppl.], S243 (1999)Google Scholar
7. Patrone, L., Nelson, D., Safarov, V. I., Sentis, M., and Marine, W., J. Appl. Phys. 87, No. 8, 3829 (2000)Google Scholar
8. Lowndes, D. H., Fowlkes, J. D., and Pedraza, A. J., Appl. Sur. Sci. 154 – 155, 647 (2000)Google Scholar
9. Pedraza, A. J., Fowlkes, J. D., Jesse, S., Mao, C., and Lowndes, D. H., Appl. Sur. Sci. 1 – 7, 6466 (2000)Google Scholar
10. Pedraza, A. J., Fowlkes, J. D., and Lowndes, D. H., Appl. Phys.A 69 [Suppl.], S731 (1999)Google Scholar
11. Fowlkes, J. D., Pedraza, A.J., and Lowndes, D. L., Appl. Phys. Lett. 77 (2000) 1629 Google Scholar
12. Jesse, S., Pedraza, A. J., Fowlkes, J. D. Budai, J. D. and Lowndes, D.H., MRS Vol. 638 (2000)Google Scholar
13. Geohegan, D. B., Puretzky, A. A., Duscher, G., and Pennycook, S. J., Appl. Phys. Lett. 73(4), 438 (1998)Google Scholar
14. Keilmann, H. and Bai, Y. H., Appl. Phys. A 29, 9 (1982)Google Scholar