Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-28T23:33:42.975Z Has data issue: false hasContentIssue false

Formation of Metastable Disordered Ni3Al by Pulsed Laser Induced Rapid Solidification

Published online by Cambridge University Press:  26 February 2011

Jeffrey A. West
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138.
James T. Manos
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138.
Michael J. Aziz
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138.
Get access

Abstract

Thin films of Ni3Al formed by co-evaporation onto insulating substrates form a single phase fcc disordered lattice upon rapid solidification following excimer laserinduced melting with an interface velocity of ~4 m/s. Transmission Electron Microscopy (TEM) and x-ray diffraction (XRD) analyses exhibit no superlattice diffraction at room temperature. Resistivity measurements, indicating that the disordered phase has a higher resistivity and much smaller temperature coefficient at room temperature than the stable ordered (L12) phase, permit us to monitor phase changes and ordering on a fast time-scale. Subsequent annealing recovers long-range order, with resistivity measurements indicating that reordering begins just below 300°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cahn, R.W., Siemers, P.A., Geiger, J.E., and Bardhan, P., Acta. Met., 35, (11), 2737, (1987).Google Scholar
2. Cahn, R.W. in High-Temperature Ordered Intermetallic Alloys, II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O. (Mat. Res. Soc. Proc. 81, Pittsburgh, PA 1987) p. 27.Google Scholar
3. Destefani, J.D., Adv. Mat. & Proc., Feb., 1989, p. 37.Google Scholar
4. Boettinger, W. and Aziz, M.J., Acta. Met., 37, (12), 3379 (1989).CrossRefGoogle Scholar
5. Yavari, A.R. and Bochu, B., Phil. Mag. A, 59, (3), (1989), pp. 697705.Google Scholar
6. Maurer, R., Galinski, G., Laag, R., and Kaysser, W.A. in High-Temperature Ordered Intermetallic Alloys, III, edited by Liu, C.T., Taub, A.I., Stoloff, N.S., and Koch, C.C. (Mat. Res. Soc. Proc. 133, Pittsburgh, PA 1989) p. 423.CrossRefGoogle Scholar
7. Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S. and Hammond, R.B., Appl. Phys. Letters 42, 445, (1983).Google Scholar
8. Chang, J.S.C. and Koch, C.S., J. Mater. Res., 5, (3), 498510, (1990).Google Scholar
9. Corey, C.L. and Potter, D,I., J. Appl. Phys. 38, 3894, (1967).Google Scholar
10. Clark, J.P. and Mohanty, G.P., Scripta Metall. 8, 959, (1974).Google Scholar
11. West, J.A., PhD Thesis, Harvard University, 1990.Google Scholar
12. Atwater, H.A., West, J.A., Smith, P.M., Aziz, M.J., Tsao, J.Y., Peercy, P.S, and Thompson, M.O. (Mat. Res. Soc. Proc. 157, Pittsburgh, PA 1989) p. 369.CrossRefGoogle Scholar
13. L'Ecuyer, J. et al. , Nucl. Instr. and Methods 160, 337 (1979).Google Scholar
14. Aziz, M.J., White, C.W., Narayan, J., and Stritzker, B. in Energy Beam-Solid Interactions in Transient Thermal Processing, edited by Nguyen, V.T. and Cullis, A.G., (Editions de Physique, Paris, France 1985) p. 231.Google Scholar
15. Thermophysical Properties of High Temperature Solid Materials, edited by Touloukian, Y.S., Thermophysical Properties Research Center, Purdue University (MacMillan Co., New York, 1967).Google Scholar
16. Mooij, J. H., Phys. Stat. Sol A, 17, 521, (1973).Google Scholar
17. Corey, C.L. and Lisowsky, B, Trans. Met. Soc. AIME, 239, 241, (1967).Google Scholar