Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T10:23:51.636Z Has data issue: false hasContentIssue false

The Formation of Metal/Metal-Matrix Nanocomposites by the Ultrasonic Dispersion of Immiscible Liquid Metals

Published online by Cambridge University Press:  10 February 2011

V. Keppens
Affiliation:
Oak Ridge National Laboratory, Solid State Division, P.O. Box 2008, MS 6056, Oak Ridge TN 37831–6056, vkl@ornl.gov
D. Mandrus
Affiliation:
Oak Ridge National Laboratory, Solid State Division, P.O. Box 2008, MS 6056, Oak Ridge TN 37831–6056, vkl@ornl.gov
J. Rankin
Affiliation:
Brown University, Box D, 182 Hope St., Providence RI 02912
L. A. Boatner
Affiliation:
Oak Ridge National Laboratory, Solid State Division, P.O. Box 2008, MS 6056, Oak Ridge TN 37831–6056, vkl@ornl.gov
Get access

Abstract

Ultrasonic energy has been used to disperse one liquid metallic component in a second immiscible liquid metal, thereby producing a metallic emulsion. Upon lowering the temperature of this emulsion below the melting point of the lowest-melting constituent, a metal/metal-matrix composite is formed. This composite consists of sub-micron-to-micron-sized particles of the minor metallic phase that are embedded in a matrix consisting of the major metallic phase. The zinc-bismuth case was used as a model system, and ultrasonic dispersion of a minor bismuth liquid phase was used to synthesize metal/metal-matrix composites. These materials were subsequently characterized using scanning electron microscopy and energy-dispersive x-ray analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review, see Ibrahim, I. A., Mohamed, F. A., and Lavernia, E. J., J. Mater. Sci.Google Scholar
2. Bevk, J., Harbison, J. P., and Bell, J. L., Appl. Phys. 49, 6031 (1978).Google Scholar
3. Verhoeven, D., Schmidt, F. A., Gibson, E. D. and Spitzig, W. A., J. Metals 38, 20 (1986).Google Scholar
4. Verhoeven, D., Schmidt, F. A., Jones, L. L., Downing, H. L., Trybus, C. L., Gibson, E. D., Chumbley, L. S., Fritzmeier, L. G., and Schnittgrund, G. D., J. Mater. Eng. 12, 127 (1990).Google Scholar
5. Singh, B., Goswami, R., and Chattopadhyay, K, Scripta Metall. Mater. 28, 1507 (1993).Google Scholar
6. Wood, W. and Loomis, A. L., Phil. Mag. S. 7. 4, 417 (1927).Google Scholar
7. Bondy, C. and Söllner, K., Trans. Faraday Soc. 32, 556 (1936).Google Scholar
8. Söllner, K. and Bondy, C., Trans. Faraday Soc. 32, 616 (1936).Google Scholar
9. Schmidt, G. and Ehret, L., Zeitschr. Elektrochem. 43, 869 (1937).Google Scholar
10. Schmidt, G. and Roll, A., Zeitschr. Elektrochem. 45, 769 (1939); 46, 653 (1939).Google Scholar
11. Ma, L., Chen, F., Shu, J., J. Mater. Sci. Lett. 14, 649 (1995).Google Scholar
12. Hansen, , Constitution of Binary Alloys, 2nd ed. (McGraw-Hill Book Company, New York, 1958).Google Scholar
13. Flynn, H. G. in Physical Acoustics, edited by Mason, W. P. (Academic Press, New York, 1964), 1B, p. 57.Google Scholar
14. Suslick, K. S., Scientific American 260, 80 (1989).Google Scholar