Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-10T19:32:58.231Z Has data issue: false hasContentIssue false

Formation of Double-Height Si(001) Steps by Sputtering with Xe Ions - A Computer Simulation

Published online by Cambridge University Press:  22 February 2011

K.-H. Heinig
Affiliation:
Research Center Rossendorf Inc., P.O. Box 510119, D-01314 Dresden, Germany
D. Stock
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave, Murray Hill, New Jersey 07974
H. Boettger
Affiliation:
Research Center Rossendorf Inc., P.O. Box 510119, D-01314 Dresden, Germany
V.A. Zinovyev
Affiliation:
Institute of Semiconductor Physics, Novosibirsk, 630090, Russia
A.V. Dvurechenskii
Affiliation:
Institute of Semiconductor Physics, Novosibirsk, 630090, Russia
L.N. Aleksandrov
Affiliation:
Institute of Semiconductor Physics, Novosibirsk, 630090, Russia
Get access

Abstract

A study of the recently observed double-height Si(001) step formation by sputtering with low-energy Xe ions is presented. The modeling of the process has been separated in two stages: (i) Molecular dynamics (MD) simulations of the interaction of 225 eV Xe ions with Si(001) surfaces and (ii) calculation of the step kinetics by reaction-diffusion equations. It is found that a single Xe ion produces surface vacancies arranged in one cluster, some adatoms and on the average one sputtered atom. For adjacent terraces on a vicinal Si(001)-(2 × 1) surface separated by SA- and SB-steps, respectively, the adatom diffusion as well as their attachment and detachment at steps and vacancy clusters determines the kinetics of the steps and results in double-height Si(001) steps.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tanaka, M. and Sakaki, H., J. J. Appl. Phys. 27, L2025 (1988).Google Scholar
2 Tsuchiya, M., Gaines, J.M., Yan, R.H., Simes, R.J., Holtz, P.O., Coldren, L.A., and Petroff, P.M., Phys. Rev. Lett. 62, 466 (1989).Google Scholar
3 Neave, J.H., Dobson, P.J., Joyce, B.A., and Zhang, J., Appl. Phys. Lett. 47, 100 (1983).Google Scholar
4 Bedrossian, P., Houston, J.E., Tsao, J.Y., Chason, E., and Picraux, S.T., Phys. Rev. Lett. 67, 124 (1991). P. Bedrossian and T. Klitsner, Phys. Rev. B, 44, 13783 (1991). P. Bedrossian and T. Klitsner, Phys. Rev. Lett. 68, 646 (1992).Google Scholar
5 Zinovyev, V.A., Aleksandrov, L.N., Dvurechenskii, A.V., Heinig, K.-H., and Stock, D., Thin Solid Films, accepted for publication.Google Scholar
6 Brice, D.K., Tsao, J.Y., and Picraux, S.T., Nucl. Instrum. Methods 44, 68 (1989).Google Scholar
7 Feil, H., Zandvliet, H.J.W., Tsai, M.-H., Dow, J.D., and Tsong, I.S.T., Phys. Rev. Lett. 69, 3076 (1992).Google Scholar
8 Stillinger, F.H. and Weber, T.A., Phys. Rev. B, 3l, 5262 (1985).Google Scholar
9 Roland, C. and Gilmer, G., Phys. Rev. B, 46, 13428 (1992). C. Roland and G. Gilmer, Phys. Rev. Lett. 67, 3188 (1991). C. Roland and G. Gilmer, Phys. Rev. B, 46, 13437 (1992).Google Scholar