Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T06:26:00.197Z Has data issue: false hasContentIssue false

Formation of Device Quality p-Type Layers in GaAs using Co-Implantation of Mg+ and As+ and Capless Rapid Thermal Annealing

Published online by Cambridge University Press:  28 February 2011

A.N.M. Masum Choudhury
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
C.A. Armiento
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
Get access

Abstract

Low (1 × 1014 cm-2) and high (1 × 1015 cm-2) dose implants of Mg+ in undoped GaAs have been activated using the enhanced overpressure proximity (EOP) rapid thermal annealing (RTA) technique. Hall measurements have yielded electrical activation efficiencies as high as 86% and 38% for low and high dose implants, respectively. For high dose implants, the outdiffusion of Mg+ from the wafer surface reduces the activation efficiency. A dramatic improvement in the activation for high dose Mg+ (1×1015 cm−-2, 100 keV) implants has been obtained by the co-implantation of As+. Compared with an activation of 18% for an implant of Mg+ only, the co-implantation of As has increased the activation to as much as 61% with a concomitant sheet resistance of 136 Ω/□. The placement of the As+ implant with respect to the position of the Mg+ profile has been found to play a significant role in the activation efficiency. This co-implantation technique in conjunction with the EOP-RTA method has been applied to the formation of thick p+ regions with high surface carrier concentrations, which has important applications in device fabrication for reducing contact resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yeo, Y. K., Park, Y. S. and Yu, P. W., J. Appl. Phys. 50, 3274 (1979).Google Scholar
2. Yeo, Y. K., Park, Y. S., Pedrotti, F. L. and Choe, B. D., J. Appl. Phys. 53, 6148 (1982).Google Scholar
3. Zoich, R.. Ryssel, H., Krany, H., Reichl, H. and Ruge, I., Ion Implantation of Semiconducrtors and Other Materials (Plenum, New York, 1977) p. 593.Google Scholar
4. McLevige, W. V., Helix, M. J., Vaidyanathan, K. V. and Streetman, B. G., J. Appl. Phys. 48, 3342 (1977).Google Scholar
5. Davies, D. E. and McNally, P. J., IEEE Electron Device Lett. EDL-4, 356 (1983).Google Scholar
6. Tabatabaie-Alavi, K., Masum Choudhury, A.N.M. and Fonstad, C. G., Appl. Phys. Lett. 43, 505 (1983).Google Scholar
7. Blunt, R. T., Szweda, R., Lamb, M.S.M. and Cullis, A. G., Electron. Lett. 20, 444 (1984).Google Scholar
8. Masum Choudhury, A.N.M. and Armiento, C. A., Appl. Phys. Lett. 49 1787 (1986).Google Scholar
9. Heckingbottom, R. and Ambridge, T., Radiat. Eff. 17, 31 (1973).Google Scholar
10. Kasahara, J., Taiya, K., Kato, Y., Arai, M. and Watanabe, N., Jpn. J. Appl. Phys. 22, L373 (1983).Google Scholar
11. Eirug Davies, D. and McNally, P. J., Appl. Phys. Lett. 44, 304 (1984).Google Scholar
12. Patel, K. K. and Sealy, B. J., Appl. Phys. Lett. 48, 1467 (1986).Google Scholar
13. Armiento, C. A. and Prince, F. C., Appl. Phys. Lett. 48, 1623 (1986).Google Scholar
14. Prince, F. C. and Armiento, C. A., IEEE Electron. Device Lett. EDL-7, 12 (1986).Google Scholar
15. Lindhard, J., Scharff, M. and Schiott, H. E., Klg. Danske Videnskab. Mat. Fys. Medd. 33, 1 (1963).Google Scholar
16. Tiwari, S., DeLuca, J. C. and Deline, V. R., Inst. Phys. Conf. Ser. No. 74, 83 (1984).Google Scholar