Skip to main content Accessibility help
×
Home

Formation of Device Quality p-Type Layers in GaAs using Co-Implantation of Mg+ and As+ and Capless Rapid Thermal Annealing

  • A.N.M. Masum Choudhury (a1) and C.A. Armiento (a1)

Abstract

Low (1 × 1014 cm-2) and high (1 × 1015 cm-2) dose implants of Mg+ in undoped GaAs have been activated using the enhanced overpressure proximity (EOP) rapid thermal annealing (RTA) technique. Hall measurements have yielded electrical activation efficiencies as high as 86% and 38% for low and high dose implants, respectively. For high dose implants, the outdiffusion of Mg+ from the wafer surface reduces the activation efficiency. A dramatic improvement in the activation for high dose Mg+ (1×1015 cm−-2, 100 keV) implants has been obtained by the co-implantation of As+. Compared with an activation of 18% for an implant of Mg+ only, the co-implantation of As has increased the activation to as much as 61% with a concomitant sheet resistance of 136 Ω/□. The placement of the As+ implant with respect to the position of the Mg+ profile has been found to play a significant role in the activation efficiency. This co-implantation technique in conjunction with the EOP-RTA method has been applied to the formation of thick p+ regions with high surface carrier concentrations, which has important applications in device fabrication for reducing contact resistance.

Copyright

References

Hide All
1. Yeo, Y. K., Park, Y. S. and Yu, P. W., J. Appl. Phys. 50, 3274 (1979).
2. Yeo, Y. K., Park, Y. S., Pedrotti, F. L. and Choe, B. D., J. Appl. Phys. 53, 6148 (1982).
3. Zoich, R.. Ryssel, H., Krany, H., Reichl, H. and Ruge, I., Ion Implantation of Semiconducrtors and Other Materials (Plenum, New York, 1977) p. 593.
4. McLevige, W. V., Helix, M. J., Vaidyanathan, K. V. and Streetman, B. G., J. Appl. Phys. 48, 3342 (1977).
5. Davies, D. E. and McNally, P. J., IEEE Electron Device Lett. EDL-4, 356 (1983).
6. Tabatabaie-Alavi, K., Masum Choudhury, A.N.M. and Fonstad, C. G., Appl. Phys. Lett. 43, 505 (1983).
7. Blunt, R. T., Szweda, R., Lamb, M.S.M. and Cullis, A. G., Electron. Lett. 20, 444 (1984).
8. Masum Choudhury, A.N.M. and Armiento, C. A., Appl. Phys. Lett. 49 1787 (1986).
9. Heckingbottom, R. and Ambridge, T., Radiat. Eff. 17, 31 (1973).
10. Kasahara, J., Taiya, K., Kato, Y., Arai, M. and Watanabe, N., Jpn. J. Appl. Phys. 22, L373 (1983).
11. Eirug Davies, D. and McNally, P. J., Appl. Phys. Lett. 44, 304 (1984).
12. Patel, K. K. and Sealy, B. J., Appl. Phys. Lett. 48, 1467 (1986).
13. Armiento, C. A. and Prince, F. C., Appl. Phys. Lett. 48, 1623 (1986).
14. Prince, F. C. and Armiento, C. A., IEEE Electron. Device Lett. EDL-7, 12 (1986).
15. Lindhard, J., Scharff, M. and Schiott, H. E., Klg. Danske Videnskab. Mat. Fys. Medd. 33, 1 (1963).
16. Tiwari, S., DeLuca, J. C. and Deline, V. R., Inst. Phys. Conf. Ser. No. 74, 83 (1984).

Related content

Powered by UNSILO

Formation of Device Quality p-Type Layers in GaAs using Co-Implantation of Mg+ and As+ and Capless Rapid Thermal Annealing

  • A.N.M. Masum Choudhury (a1) and C.A. Armiento (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.