Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T23:31:02.608Z Has data issue: false hasContentIssue false

Formation of buried α- and β- FeSi2 in (100) Si by high dose ion implantation

Published online by Cambridge University Press:  25 February 2011

K. Maex
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
A. Lauwers
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
M. Van Hove
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
W. Vandervorst
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
M. Van Rossum
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Get access

Abstract

A study on ion beam synthesis of buried α- and β-FeSi2 in >100< Si is presented. Phase formation has been investigated as a function of implant and anneal temperature. Layer characterization was performed by RBS, XRD, resistivity, spreading resistance and Hall effect measurements. Orientation effects in the layers have been observed depending on the implant temperature. Transport measurements show that die holes are the majority carriers in the semiconducting layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Oostra, D. J., Vandenhoudt, D. E. W., Bulle-Lieuwma, C. W. T. and Naburgh, E. P., Appl. Phys. Lett. 59 (1991) 1737.CrossRefGoogle Scholar
2. Radermacher, K., Mantl, S., Dieker, Ch. and Lüth, H., Appl. Phys. Lett. 59 (1991) 2145.Google Scholar
3. Gerthsen, D., Rademacher, K., Dieker, Ch. and Mantl, S., J. Appl. Phys. 71 (1992) 3788.Google Scholar
4. Hunt, T. D., Sealy, B. J., Reeson, K. J., Gwilliam, R. M., Homewood, K. P., Wilson, R. J., Meekison, C. D. and Booker, C. R., presentend at the Ion Implantation Technology Conference, 1992, to be published.Google Scholar
5. Vandenabeele, P. and Maex, K., J. Vac. Sci. Technol. B9 (1991) 2784.Google Scholar
6. Tavares, J. and Bender, H., private communication.Google Scholar
7. ASTM, powder diffraction standards.Google Scholar
8. Dusausoy, Y., Protas, J., Wandji, R. and Roques, B., Acta Cryst., B27 (1971) 1209.CrossRefGoogle Scholar
9. Tan, Z., Namavar, F., Budnick, J. I., Sanchez, F. H., Fasihuddin, A., Heald, S. M., Bouldin, C. E. and Woicik, J. C., Phys. Rev. B 46 (1992) 4077.CrossRefGoogle Scholar
10. Dimitriadis, C. A., Werner, J. H., Logothetidis, S., Stutzmann, M., Weber, J. and Nesper, R., J. Appl. Phys. 68 (1990) 1726.Google Scholar
11. Regolini, J. L., Trincai, F., Berbezier, I. and Shapira, Y., Appl. Phys. Lett. 60 (1992) 956.Google Scholar