Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T00:29:17.484Z Has data issue: false hasContentIssue false

Formation of antimony 1D-nanostructures on Si (5 5 12) surface

Published online by Cambridge University Press:  01 February 2011

S. M. Shivaprasad
Affiliation:
Surface Physics & Nanostructures Group, National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110 012.
Mahesh Kumar
Affiliation:
Surface Physics & Nanostructures Group, National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110 012.
Amish G. Joshi
Affiliation:
Surface Physics & Nanostructures Group, National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110 012.
Vinod Kumar Paliwal
Affiliation:
Surface Physics & Nanostructures Group, National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110 012. Department of Physics, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi, 110003,India.
Get access

Abstract

Of late, high index Si surfaces like, (5 5 12) are being explored for the formation of 1D nanostructures in the form of nanowires or chains. The surface topography of Si (5 5 12) presents an unique template for the growth of 1D nanostructures. In this paper we report the adsorption-desorption studies of Sb onto (2×1) reconstructed surface of Si (5 5 12). Motivated by our earlier studies of adsorption/desorption of Sb on low index surfaces (001) and (111), studying the interaction on high index surface like (5 5 12) is found to be interesting. The experiments have been performed in UHV with in-situ growth and probed by using AES, LEED and EELS techniques. The uptake curve shows initially a simultaneous multilayer growth of Sb up to 4 ML and then at 20 ML the entire Si surface is covered by Sb. The LEED patterns show a disorder during growth at RT above 1 ML. EELS studies at 250 eV, primary beam energy show that as the adsorption proceeds the features of bulk Sb start appearing above 4ML coverage. However, the bulk Sb features are not complete until a high enough coverage of Sb (˜20ML) which suggests the existence of the primary rows up to a higher coverage. Annealing studies have also been performed on the RT adsorbed system, to study the residual thermal desorption characteristics. Annealing the system to about 7900C results in Si (337) facets at a low coverage of 0.2 ML. The anisotropy in the LEED spots suggests an ordered Sb adsorption along (1 10) and a local disorder in the (665 ) direction. Thus we provide evidence for the formation of a zig-zag 1D-nanowire of Sb grown on the (5 5 12). The new phase is also accompanied by forming a dangling bond state at 3 eV in EELS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Paliwal, V. K., Vedeshwar, A. G. and Shivaprasad, S. M., Phys. Rev. B 66, 245404 (2002).10.1103/PhysRevB.66.245404Google Scholar
2 Paliwal, V. K., Vedeshwar, A. G. and Shivaprasad, S. M., Surf. Sci. 513, L397 (2002).10.1016/S0039-6028(02)01827-7Google Scholar
3 Jeong, S., Jeong, H., Cho, S. and Seo, J.M., Surf. Sci. 557, 183 (2004).10.1016/j.susc.2004.03.040Google Scholar
4 Baski, A.A., Erwin, S. C. and Whitman, L. J., Science 269, 1556 (1995).10.1126/science.269.5230.1556Google Scholar
5 Woodworth, P.H., Moore, J.C. and Baski, A.A., J. Vac. Sci. Technol. A 21, 1332 (2003).10.1116/1.1564041Google Scholar
6 Liu, J., Takeguchi, M., Yasuda, H. and Furuya, K., J. Cryst. Growth 237, 188 (2002).10.1016/S0022-0248(01)01874-7Google Scholar
7 Cho, S. and Seo, J.M., Surf. Sci. 565, 14 (2004).10.1016/j.susc.2004.07.004Google Scholar
8 Lee, S. S., Kim, N. D., Hwang, C. G., Song, H. J., and Chung, J. W., Physical Review B 66, 115317 (2002)10.1103/PhysRevB.66.115317Google Scholar
9 Blankenship, S.R., Song, H.H., Baski, A.A. and Carlisle, J.A., J. Vac. Sci. Technol. A 17, 1615 (1999).10.1116/1.581860Google Scholar
10 Song, H.H., Jones, K.M. and Baski, A.A., J. Vac. Sci. Technol. A 17, 1696 (1999).10.1116/1.581875Google Scholar
11 Wolff, G., Jmussig, H-, Dabrowski, J., Arabezyk, W., Hinrich, S., Surf. Sci. 357, 667 (1996).10.1016/0039-6028(96)00242-7Google Scholar
12 An, K.S., Hwang, C.C., Kim, Y.K., Cho, E.S., Park, C.-Y., Pukrid, S., Kakizaki, A., Okuda, T., Kinoshita, T., Surf. Sci. 513, 49 (2002).10.1016/S0039-6028(02)01732-6Google Scholar
13 Paliwal, V. K., Vedeshwar, A. G. and Shivaprasad, S. M., Surf. Sci. 540, L617 (2003).10.1016/S0039-6028(03)00847-1Google Scholar
14 Paliwal, V. K. and Shivaprasad, S. M., Surf. Sci. 561, L207 (2004).10.1016/j.susc.2004.05.070Google Scholar
15 Enta, Y., Suzuki, S., Kono, S. and Sakamato, T., Phy. Rev. B 39, 56 (1989).Google Scholar
16 Ranke, W. and Xing, Y.R., Surf. Rev. Lett. 4, 15 (1996).10.1142/S0218625X97000043Google Scholar
17 Lifshits, V.G., Saranin, A.A. and Zotov, A.V., Surface phases on Silicon, Wiley, New York (1994).Google Scholar
18 Andrieu, S. and Avitaya, F.Arnaud d', Surf. Sci. 219, 277 (1989).10.1016/0039-6028(89)90213-6Google Scholar
19 Peng, Y., Minoda, H., Tanishiro, Y. and Yagi, K., Surf.Sci. 493, 508 (2001).10.1016/S0039-6028(01)01260-2Google Scholar
20 Rowe, J.E. and Ibach, H., Phy. Rev. Lett. 31, 102 (1973).10.1103/PhysRevLett.31.102Google Scholar