Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-19T07:08:51.617Z Has data issue: false hasContentIssue false

Formation of a Ba-Te Surface on GaAs

Published online by Cambridge University Press:  01 February 2011

Kevin A. Boulais
Affiliation:
Electromagnetic and Solid State Technologies Division, Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA 22448, U.S.A.
Francisco Santiago
Affiliation:
Electromagnetic and Solid State Technologies Division, Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA 22448, U.S.A.
Karen J. Long
Affiliation:
Electromagnetic and Solid State Technologies Division, Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA 22448, U.S.A.
Victor H. Gehman
Affiliation:
Electromagnetic and Solid State Technologies Division, Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA 22448, U.S.A.
Get access

Abstract

The formation of a Ba-Te surface on GaAs has been investigated. The surface was created using molecular beam epitaxy (MRS). A GaAs (100) surface was first exposed to Te and characterized using x-ray photoelectron spectroscopy (XPS), reflective high energy electron diffraction (RHEED) and low energy electron diffraction (LEED). The Te-reacted surface was then exposed to BaF2 flux producing a second reaction. In this reaction, the BaF2 dissociated leaving barium on the surface but no fluorine. This is in contrast to the clean (no tellurium) GaAs (100) surface in which BaF2 has been shown to grow single crystal. Although high order exists during early stages of the Ba-Te growth, further exposure gives way to a polycrystalline form. This paper discusses the formation and analysis of the Ba-Te surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Copel, M., Reuter, M. C., Kaxiras, E. and Tromp, R. M., Phys. Rev. Lett. 63, 6 (1989).Google Scholar
2. Grandjean, N., Massies, J. and Etgens, V. H., Phys. Rev. Lett. 69, 5 (1992).Google Scholar
3. Rodrigues, W. N., Etgens, V. H., Sauvage-Simkin, M., Rossi, G., Sirotti, F., Pinchaux, R. and Rochet, F., Solid State Comm. 95, 12 (1995).Google Scholar
4. Spahn, W., Ress, H. R., Schull, K., Ehinger, M., Hommel, D. and Landwehr, G., J. Crystal Growth 159 (1996).Google Scholar
5. Grandjean, N. and Massies, J., Phys. Rev. B 53, 20 (1996).Google Scholar
6. Ferraz, A. C. and Claudino da Silva, R., Surf. Sci. 352–254 (1996).Google Scholar
7. Kuruvilla, B. A., Ghaisas, S. V., Datta, A., Banerjee, S. and Kulkarni, S. K., J. Appl. Phys. 73, 9 (1993); and references therein.Google Scholar
8. Albert, D., Olszowi, B., Spahn, W., Nurnberger, J., Schull, K., Korn, M., Hock, V., Ehinger, M., Faschinger, W. and Landwehr, G., J. Crystal Growth 184/185 (1998).Google Scholar
9. Ayyildiz, E., Bati, B., Temirci, C. and Turut, A., Appl. Surf. Sci. 152 (1999).Google Scholar
10. Zahn, D. R. T., Kampen, T. U., Hohenecker, S. and Braun, W., Vacuum 57 (2000).Google Scholar
11. Scimeca, T., Prabhakaran, K., Watanabe, Y., Maeda, F. and Oshima, M., Appl. Phys. Lett. 63 (1993).Google Scholar
12. Pashley, M. D. and Li, D., J. Vac. Sci. Technol. A 12, 4 (1994).Google Scholar
13. Ashby, C. I. H., Zavakil, K. R., Baca, A. G., Chang, P.-C., Hammons, B. E. and Hafich, M. J., Appl. Phys. Lett. 76, 3 (2000).Google Scholar
14. Gobil, Y., Cibert, J., Saminadayar, K. and Tatarenko, S., Surf. Sci. 211/212 (1989).Google Scholar
15. Stumborg, M. F., Santiago, F., Chu, T. K. and Price, J. L., J. Appl. Phys. 77, 6 (1995).Google Scholar
16. Stumborg, M. F., Chu, T. K., Santiago, F., Price, J. L., Guardala, N. A. and Land, D. J., J. Vac. Sci. Technol. A 14, 1 (1996).Google Scholar