No CrossRef data available.
Article contents
Formation, Characterization, Protein Resistance, and Reactivity of Cl3Si(CH2)11(OCH2CH2)3OH Self-Assembled Monolayers
Published online by Cambridge University Press: 01 February 2011
Abstract
We report a method for generating tri(ethylene glycol)-terminated-n-alkyltrichlorosiloxane monolayers on SiO2 surfaces. These chemisorbed films, with a thickess of ∼2-3 nm, provide an oligo(ethylene glycol) surface that reduces the nonspecific adsorption of proteins and hydroxyl attachment sites for covalently immobilizing biomolecules to the substrate. These mono-molecular films were formed by adsorbing an acetoxy-tri(ethylene glycol)-terminated n-alkyltrichlorosilane, CH3(C=O)O(CH2CH2O)3(CH2)11SiCl3, onto glass and Si/SiO2 substrates, where the terminal acetate provided a protecting group for the hydroxyl functionality during self-assembly of the film. After formation of the monolayer, the acetate functionality was reduced chemically to form films exposing a covalently attached -(OCH2CH2)3OH terminus at a density of ∼3[.dotmath]1014 molecules/cm2. Protein adsorption studies verified that the films exhibited notable resistances against the non-specific adsorption of various proteins. Chemical modification of the -(OCH2CH2)3OH surface with protein A provided a non-adsorbing surface for selective immobilization of immunoglobulins.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002