Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T16:55:30.478Z Has data issue: false hasContentIssue false

Formation and Properties of Three Copper Pairs in Silicon

Published online by Cambridge University Press:  01 February 2011

S.K. Estreicher
Affiliation:
Physics Department, Texas Tech University, Lubbock, TX 79409-1051, USA
D. West
Affiliation:
Physics Department, Texas Tech University, Lubbock, TX 79409-1051, USA
J.M. Pruneda
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
S. Knack
Affiliation:
Institut für Tieftemperaturphysik, TU Dresden, 01062 Dresden, Germany
J. Weber
Affiliation:
Institut für Tieftemperaturphysik, TU Dresden, 01062 Dresden, Germany
Get access

Abstract

Copper in silicon is a feared contaminant in device processing. It diffuses quickly as an interstitial and forms electrically active precipitates that are difficult to dissolve. Several complexes assigned to copper pairs have been observed but have yet to be unambiguously identified and fully characterized. We present the results of joint theoretical-experimental studies of several pair structures. The theoretical work involves ab-initio molecular-dynamics simulations, and the results include configurations, binding energies, electronic structures, vibrational modes and formation dynamics. The experimental work combines electrical and optical techniques. One characteristic of the photoluminescence spectra is the presence of phonon replicas that imply the existence of very similar low-frequency and localized vibrational modes in two distinct copper pairs. These modes are theoretically identified.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mesli, A. and Heiser, T., Defect and Diff. Forum 131-132, 89 (1996)Google Scholar
2. Istratov, A.A. and Weber, E.R., Appl. Phys. A 66, 123 (1998)Google Scholar
3. Istratov, A.A., Sachdeva, R., Flink, C., Balasubramanian, S., and Weber, E.R., Sol. St. Phenom. 82-84, 323 (2002)Google Scholar
4. Myers, S.M. and Follstaedt, D.M., J. Appl. Phys. 79, 1337 (1996)Google Scholar
5. Shabani, M.B., Yoshimi, T., and Abe, H., J. Electrochemical Soc. 143, 2025 (1996)Google Scholar
6. Istratov, A.A., Flink, C., Hieslmair, H., Weber, E.R., and Heiser, T., Phys. Rev. Lett. 81, 1243 (1998)Google Scholar
7. Woon, D.E., Marynick, D.S., and Estreicher, S.K., Phys. Rev. B 45, 13383 (1992)Google Scholar
8. Istratov, A.A., Hieslmair, H., Flink, C., Heiser, T., and Weber, E.R., Appl. Phys. Lett. 71, 2349 (1997)Google Scholar
9.See Prescha, T., Zundel, T., Weber, J., Prigge, H., and Gerlach, P., Mater. Sci. Engr. B 4, 79 (1989) and the Reviews [1] and [2].Google Scholar
10. Knack, S., Weber, J., and Lemke, H., Physica B 273-274, 387 (1999)Google Scholar
11. Wahl, U., Vantomme, A., Langouche, G., Correia, J.G., and ISOLDE Collaboration, Phys. Rev. Lett. 84, 1495 (2000) and U. Wahl, A. Vantomme, G. Langouche, J.P. Araújo, L. Peralta, and J.G. Correia, Appl. Phys. Lett. 77, 2142 (2000)Google Scholar
12. Wahl, U., private communication.Google Scholar
13. Hai, P.N., Gregorkiewicz, T., Ammerlaan, C.A.J., and Don, D.T., Phys. Rev. B 56, 4620 (1997)Google Scholar
14. Ammerlaan, C.A.J., private communication.Google Scholar
15. Weber, J., Bauch, H., and Sauer, R., Phys. Rev. B 25, 7688 (1982)Google Scholar
16. Nazaré, M.H., Duarte, A.J., Steele, A.G., Davies, G., and Lightowlers, E.C., Mater. Sci. Forum 83-87, 191 (1992)Google Scholar
17. Erzgräber, H.B. and Schmalz, K., J. Appl. Phys. 78, 4066 (1995)Google Scholar
18. Knack, S., Weber, J., Lemke, H., and Riemann, H., Physica B 308-310, 404 (2001)Google Scholar
19. Istratov, A.A., Hieslmair, H., Heiser, T., Flink, C., and Weber, E.R., Appl. Phys. Lett. 72, 474 (1998)Google Scholar
20. Nakamura, M., Ishiwari, S., Tanaka, A., Appl. Phys. Lett. 73, 2325 (1998)Google Scholar
21. Nakamura, M., Appl. Phys. Lett. 73, 3896 (1998)Google Scholar
22. Estreicher, S.K., Mater. Sci. Engr. R 14, 319 (1995)Google Scholar
23. McGuigan, K.G., Henry, M.O., Lightowlers, E.C., Steele, A.G., and Thewalt, M.L.W., Sol. St. Com. 68, 7 (1988)Google Scholar
24. Davies, G., Harding, R., Jin, T., Mainwood, A., and Leung-Wong, J., Proc. E-MRS, June 2001, Symp. BGoogle Scholar
25. Davies, G., private communication.Google Scholar
26. Sánchez-Portal, D., Ordejón, P., Artacho, E., and Soler, J.M., Int. J. Quant. Chem. 65, 453 (1997); E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J.M. Soler, Phys. Stat. Sol. (b) 215, 809 (1999)Google Scholar
27. Ceperley, D.M. and Adler, B.J., Phys. Rev. Lett. 45, 566 (1980)Google Scholar
28. Perdew, S. and Zunger, A., Phys. Rev. B 32, 5048 (1981)Google Scholar
29. Kleinman, L. and Bylander, D.M., Phys. Rev. Lett. 48, 1425 (1982)Google Scholar
30. Monkhorst, H.J. and Pack, J.D., Phys. Rev. B 13, 5188 (1976)Google Scholar
31. Estreicher, S.K., West, D., and Ordejón, P., Sol. St. Phenom. 82-84, 341 (2002)Google Scholar
32. Estreicher, S.K., Phys. Rev. B 60, 5375 (1999)Google Scholar
33. Pruneda, J.M., Estreicher, S.K., Junquera, J., Ferrer, J., and Ordejón, P., Phys. Rev. B 65, 075210 (2002)Google Scholar
34. Estreicher, S.K., West, D., and Weber, J., unpublished.Google Scholar
35. Watkins, S.P., Ziemelis, U.O., M.Thewalt, L.W., and Parsons, R.R., Sol. St. Comm. 43, 687 (1982)Google Scholar