Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T06:23:07.842Z Has data issue: false hasContentIssue false

Formation and Erosion of WC under W+ Irradiation of Graphite

Published online by Cambridge University Press:  18 March 2011

J. Roth
Affiliation:
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, GERMANY
U. v. Toussaint
Affiliation:
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, GERMANY
K. Schmid
Affiliation:
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, GERMANY
J. Luthin
Affiliation:
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, GERMANY
W. Eckstein
Affiliation:
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, GERMANY
R. A. Zuhr
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN, USA
D.K. Hensley
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Get access

Abstract

The bombardment of C with 100 keV and 1 MeV W at normal incidence is studied as a function of the incident W fluence experimentally and by computer simulation with the program TRIDYN. Calculated oscillations in the amount of retained W and in the target weight change are confirmed experimentally for 100 keV at room temperature. XPS investigations show W2C formation during ion implantation already at room temperature. RBS depth profiles for 1 MeV bombardment show W mobility and surface segregation even at liquid nitrogen (LN2) temperatures. At elevated temperatures W clusters to form nano-particles at the surface and the oscillations in the retained amount of W disappear.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]ITER Physics Expert Group on Divertor, ITER Physics Expert Group on Divertor Modeling and Database, ITER Physics Basis Editors, Nucl.Fusion 39 (1999) Nr. 12, p. 2391ffGoogle Scholar
[2]Eckstein, W., Roth, J., Nucl. Instrum. Meth. B 53 (1991) 279 Google Scholar
[3]Eckstein, W., Nucl. Instrum. Meth. B, accepted for publication (NIMB 41220)Google Scholar
[4]Zuhr, R.A., Roth, J., Eckstein, W., Toussaint, U. von, Luthin, J., J. Nucl. Mater., accepted for publication (2000)Google Scholar
[5]Moeller, W., Eckstein, W., Biersack, J. P., Comp. Phys. Commun. 51 (1988) 355 Google Scholar
[6]Eckstein, W., Computer Simulation of Ion-Solid Interaction, Springer Series in Materials Science, Vol.10, (Springer-Verlag, Berlin, Heidelberg, 1991)Google Scholar
[7]Biersack, J. P. and Eckstein, W., Appl. Phys. A 34 (1984) 73 Google Scholar
[8]Wilson, W. D., Haggmark, L. G., Biersack, J. P., Phys. Rev. B 15 (1977) 2458 Google Scholar
[9]Lindhard, J., Scharff, M., Phys. Rev. 124 (1961) 128 Google Scholar
[10]Oen, O. S., Robinson, M. T., Nucl. Instrum. Meth. 132 (1976) 647 Google Scholar
[11]Eckstein, W., Hou, M., Shulga, V. I., Nucl. Instrum. Meth. B 119 (1996) 477 Google Scholar
[12]Roth, J., Zuhr, R. A., Withrow, S. P., and Eatherly, W. P., J. Appl. Phys. 63 (1988) 2603 Google Scholar
[13]Soeder, B., Roth, J. and Moeller, W., Phys. Rev. B 37 (1988) 815 Google Scholar
[14]Luthin, J., Linsmeier, Ch., Surf. Science 454–456 (2000) 78 Google Scholar
[15]Hildebrandt, D., Wienhold, P., Schneider, W., J. Nucl. Mater., accepted for publicationGoogle Scholar