Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-02T09:21:34.970Z Has data issue: false hasContentIssue false

Formation and Characterization of Spe Grown Ultra-Thin Cobalt Disilicide Film

Published online by Cambridge University Press:  10 February 2011

Xin-Ping Qu
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai, CHINA xpqu@Fudan.edu.cn
C. Detavernier
Affiliation:
Dept. of Solid State Science, University of Gent, Krijgslaan 281/S 1, B-9000, Gent, Belgium.
R L. Van Meirhaeghe
Affiliation:
Dept. of Solid State Science, University of Gent, Krijgslaan 281/S 1, B-9000, Gent, Belgium.
F. Cardon
Affiliation:
Dept. of Solid State Science, University of Gent, Krijgslaan 281/S 1, B-9000, Gent, Belgium.
Get access

Abstract

Ultra-thin epitaxial CoSi2 films formed by Co(3∼5nm)/Ti(1 nm)/Si(100) and Co(3∼5nm)/Si(lnm)/Ti(Inm)/Si are studied. The multilayers are deposited by ion-beam sputtering. Rapid thermal annealing (RTA) is used for silicidation. XRD, RBS, TEM, AFM, four-point probe, I-V and C-V measurements are carried out for characterization. The XRD spectra show the CoSi2 film formed by Co/Ti/Si or Co/Si/Ti/Si solid phase epitaxy has, epitaxial characteristic. XTEM shows that the film is continuous. RBS/Channeling shows that the formed CoSi2 has sharp interface with a minimum channeling yield of Co signal of 40%. AFM shows that the surface of ultra-thin CoSi2 film is smooth with a roughness of nearly 0.7 nm. The Rs∼T relationship shows that the CoSi2 films formed by Co/Si/Ti/Si reaction have the best thermal stability (stable up to 900°C). Those formed by Co/Ti/Si reaction are stable up to 850°C, while those formed by Co/Si reaction are only stable up to 750°C. By fitting the experimental I-V and C-V curves of the epitaxial CoSi2/Si Schottky diodes, barrier heights of around 0.6 eV and close to unity ideality factors are obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vojak, B.A., Alley, G.A., IEEE Electron device, ED–30, 877(1983).10.1109/T-ED.1983.21230Google Scholar
2. Z.G Xiao, Rozgonyi, G.A., Canovai, C.A., Osburn, C.M., J. Mater. Res. 7, 269(1992).Google Scholar
3. Maszara, W.P., Appl. Phys. Lett. 62, 961(1993).10.1063/1.108533Google Scholar
4. Tung, R.T., Mater. Chem. Phys. 32, 107(1993).10.1016/0254-0584(92)90268-DGoogle Scholar
5. A.E White, Short, K.T., Dynes, R.C., Garno, J.P., Gibson, J.M., Appl. Phys. Lett. 50, 95 (1987).Google Scholar
6. Tung, R.T., Appl. Surf. Sci. 117/118, 268(1997).10.1016/S0169-4332(97)80092-XGoogle Scholar
7. Tung, R.T., Schrey, F., MRS Symp. Proc. 402, 173(1996).10.1557/PROC-402-173Google Scholar
8. Dass, M.L.A., Fraser, D.B., Wei, C.-S., Appl. Phys. Lett. 58, 1308(1991).10.1063/1.104345Google Scholar
9. Liu, P., Li, B.-Z., Sun, Z. Gu, Z.G., Huang, W.N., Zhou, Z.Z., Ni, R.S., Lin, C.L, Zhou, S.C., Hong, F., Rozgonyi, G.A., J. Appl. Phys. 74, 1700(1993).10.1063/1.354824Google Scholar
10. Lawers, A., Kyllesbech, K. Larsen, Van Hove, M., Verbeeck, R., Maex, K., Von Rossum, M., J. Appl. Phys. 77, 2525(1995).10.1063/1.358782Google Scholar
11. Hatzikonstantindou, S., Wikman, P., Zhang, S.L., Petersson, C. Sture, J. Appl. Phys. 80, 252 (1996).10.1063/1.362907Google Scholar
12. Cardenas, J., Zhang, S.L., Svensson, B.G., Petersson, C.S., J. Appl. Phys. 80, 762(1996).10.1063/1.362884Google Scholar