Skip to main content Accessibility help

Focused Electron Beam Induced Deposition of High Resolution Magnetic Scanning Probe Tips

  • I. Utke (a1), F. Cicoira (a1), G. Jaenchen (a1), P. Hoffmann (a1), L. Scandella (a2), B. Dwir (a3), E. Kapon (a3), D. Laub (a4), Ph. Buffat (a4), N. Xanthopoulos (a5) and H.J. Mathieu (a5)...


Apexes of commercial pyramidal silicon scanning microscopy tips were magnetically functionalized by means of local focused electron beam induced deposition. High aspect ratio supertips and local tip coatings with varying apex diameters can be produced by varying exposure time, beam current, and scan mode. The carbonyl precursor Co2(CO)8 was used as source of magnetic metal. Tip performance was tested with magnetic force microscopy (tapping / lift-retrace mode) and magnetically actuated cantilever atomic force microscopy. The deposit contains 34±2 at.% Co, dispersed as 2-5 nm metal nanocrystals in a carbonaceous matrix. Specific surface reactions and Boudouard reactions are proposed to explain the resulting deposit composition measured by Auger spectroscopy. The electrical resistivity is 104 higher than bulk Co resistivity.



Hide All
1. Sun, S., Murray, C. B., Weller, D., Folks, L. and Moser, A., Science 287, 1898 (2000).
2. Schoessler, C., Kaya, A., Kretz, J., Weber, M. and Koops, H. W. P., Microelectron. Engin. 30, 471 (1996).
3. Utke, I., Berger, R., Scandella, L. and Hoffmann, P., Appl. Phys. Lett. (submitted).
4. Hoffmann, P., Utke, I., Cicoira, F., Dwir, B., Leifer, K., Kapon, E. and Doppelt, P., Mat. Res. Soc. Symp. Proc., San Francisco, 171 (2000).
5. Schreckenbach, G., Ziegler, T. and Li, J., Int. J. Quantum Chem. 56, 477 (1995).
6. Huber, K. P. and Herzberg, G., in Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules, (Van Nostrand Reinhold, New York, 1979).
7. Suvanto, S., PhD thesis N° 43, University of Joensuu (1999).
8. Boudouard, O., J. Chem. Soc. 2, 287 (1899).
9. Leiweke, R. J. and Lempert, W. R., 32nd AIAA Plasmadynamics and Lasers Conference, Anaheim, CA, 2936 (2001).
10. Koops, H. W. P., Weiel, R., Kern, D. P. and Baum, T. H., J. Vac. Sci. Technol. B 6, 477 (1988).
11. Hoyle, P. C., Ogasawara, M., Cleaver, J. R. A. and Ahmed, H., Appl. Phys. Lett. 62, 3043 (1993).
12. Hoyle, P. C., Cleaver, J. R. A. and Ahmed, H., Appl. Phys. Lett. 64, 1448 (1994).
13. Weber, M., Koops, H. W. P., Rudolph, M., Kretz, J. and Schmidt, G., J. Vac. Sci. Technol. B 13, 1364 (1995).
14. Kunz, R. R. and Mayer, T. M., J. Vac. Sci. Technol. B 6, 1557 (1988).
15. Scheuer, V., Koops, H. and Tschudi, T., Microelectron. Engin. 5, 423 (1986).
16. Kislov, N. A., Khodos, I. I., Ivanov, E. D. and Barthel, J., Scanning 18, 114 (1996).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed