Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T13:12:45.021Z Has data issue: false hasContentIssue false

Fluorine In Silica Gels

Published online by Cambridge University Press:  28 February 2011

E. M. Rabinovich
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. L. Wood
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Fluorine has a remarkable and diverse action in silica sols, gels and gel-derived glasses. Introduced in ionic form, it causes more rapid gelation, it reduces surface area and water adsorption of dry gels, and it helps to eliminate bubble formation during sintering and reheating of gel-derived glasses. The mechanisms for these actions of the fluoride ion are reviewed, with a more detailed discussion of the rate of gelation. Several previously held views of the way fluoride accelerates gel formation are compared with a new suggestion that it is caused by an electrostatic attraction between the proton of the OH of silicic acid and F present as Si-F groups.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iler, R. K., The Chemistry of Silica (Wiley, New York, 1979).Google Scholar
2. Lyakov, D. and Samuneva, B., presented at the 3d Internat. Workshop on Glasses and Glass-Ceramics from Gels, Montpellier, France, Sept. 12–14, 1985; to be published in J. Non-Cryst. Solids 82 (1986).Google Scholar
3. Wood, D. L. and Rabinovich, E. M. J. Non-Cryst. Solids 82 (1986).Google Scholar
4. Krol, D. M. and Rabinovich, E. M., presented at the 3d Internat. Workshop on Glasses and Glass-Ceramics from Gels, Montpellier, France, Sept. 12–14, 1985; to be published in J. Non-Cryst. Solids 82 (1986).Google Scholar
5. Nassau, K., Rabinovich, E. M., Miller, A. E. and Gallagher, P. K., presented at the 3d Internat. Workshop on Glasses and Glass-Ceramics from Gels, Montpellier, France, Sept. 12–14, 1985; to be published in J. Non-Cryst. Solids 82 (1986).Google Scholar
6. Wood, D. L. and Rabinovich, E. M., Ref. 49-G-85F in Ceram. Bull. 64 (10), 1342 (1985).Google Scholar
7. Rabinovich, E. M., Johnson, D. W. Jr., MacChesney, J. B., and Vogel, E. M., J. Amer. Ceram. Soc. 66, 686688 (1983).CrossRefGoogle Scholar
8. Nassau, K., Ref. 50-G-85G in Ceram. Bull. 64 (10), 1342 (1985).Google Scholar
9. Weyl, W. A. and Morboe, E. C., The Constitution of Glasses II, part 2 (Wiley, New York, 1967).Google Scholar
10. Rabinovich, E. M., Inorg. Mater. (English Transl.) 3 (5), 762766 (1967).Google Scholar
11. Rabinovich, E. M., Phys. Chem. Glasses 24 (2), 5456 (1983).Google Scholar
12. Remy, M., Lehrbuch der Anorganischen Chemie, B.l, (Akad. Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1960).Google Scholar
13. Kauzmann, W., in Advances in Protein Chemistry 14, edited by Anfinsen, C. B. Jr., et al., (Academic, New York, 1959) pp. 3747.Google Scholar
14. Wood, D. L., Rabinovich, E. M., Johnson, D. W. Jr., MacChesney, J. B., and Vogel, E. M., J. Amer. Ceram. Soc., 66, 693699 (1983).Google Scholar
15. Pauling, L. and Pauling, P., Chemistry (Freeman, San Francisco, 1975) pp. 284, 287.Google Scholar
16. Rabinovich, E. M., Wood, D. L., Johnson, D. W. Jr., Fleming, D. A., Vincent, S. M. and MacChesney, J. B., J. Non-Cryst. Solids 82 (1986).Google Scholar
17. Fleming, J. W. and Wood, D. L., Appl. Opt. 22, 3102 (1983).Google Scholar
18. Uhlmann, D. R. and Yinnon, H., in Glass: Science and Technology 1 edited by Uhlmann, D. R. and Kreidl, N. J. (Academic, New York, 1983) pp. 814.Google Scholar
19. Rabinovich, E. M., J. Non-Cryst. Solids 71, 187193 (1985).Google Scholar