Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T08:30:18.859Z Has data issue: false hasContentIssue false

Fluorine Atom Production Mechanisms From COF2 and NF3 in Uv Laser Etching of Poly-Silicon and Molybdenum

Published online by Cambridge University Press:  28 February 2011

Gary L. Loper
Affiliation:
Chemistry and Physics Laboratory, The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
Martin D. Tabat
Affiliation:
Chemistry and Physics Laboratory, The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
Get access

Abstract

Ultraviolet laser-induced, radical-etching processes developed by us can provide practical etch rates and selectivities for most of the important film layer combinations used in silicon microelectronic devices. These processes have been demonstrated in simple proximity and projection exposure experiments to produce etch features on surfaces with dimensions of a few tenths of a micrometer.

Mechanistic studies suggest that, in our etching processes for polysilicon and molybdenum, fluorine atoms responsible for etching are primarily produced from the precursors COF2 and NF3 on the surface rather than in the gas phase. The predominant production process appears to be photodecomposition of surface adsorbed precursor. Contributions due to precursor pyrolysis or precursor reaction with photogenerated charge carriers are found to be unimportant.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ehrlich, D. J., Osgood, R. M. Jr., and Deutsch, T. F., Appl. Phys. Lett. 36, 698 (1980).CrossRefGoogle Scholar
2. Loper, G. L. and Tabat, M. D., Proc. Intern. Conf. on Lasers '83, San Francisco, CA, December 12–16, 1983; Proc. Soc. Photo-Opt. Instrum. Eng. 459, 121 (1984).Google Scholar
3. Arikado, T., Sekine, M., Okano, H., Horiike, Y., Proc. of 1983 Fall Meeting of Materials Research Society, 1984, 167.Google Scholar
4. Brewer, P., Halle, S., and Osgood, R. M. Jr., Appl. Phys. Lett. 45, 475 (1984).CrossRefGoogle Scholar
5. Loper, G. L. and Tabat, M. D., Appl. Phys. Lett. 46, 654 (1985).CrossRefGoogle Scholar
6. Loper, G. L. and Tabat, M. D., J. Appl. Phys. 58, 3651 (1985).CrossRefGoogle Scholar
7. Ehrlich, D. J., Tsao, J. Y., and Bozler, C. O., J. Vac. Sci. Technol. B3, 1 (1985).CrossRefGoogle Scholar
8. Greenberg, K. E., Johnson, A. W., Medernach, J. W., and Jungling, K., Proc. of Symp. D, “Beam-Induced Chemical Processes,” 1985 Fall Meeting of Materials Research Society, p. 59. M. Hirose, S. Yokoyama, and Y. Yamakage, J. Vac. Sci. Technol. B3, 1445 (1985).Google Scholar
9. Loper, G. L. and Tabat, M. D., Proc. of Symp. D., “Beam-Induced Chemical Processes,” 1985 Fall Meeting of Materials Research Society, p. 133; Proc. Soc. Photo-Opt. Instrum. Eng. 621, 87 (1986).Google Scholar
10. Fahlen, T. S., IEEE J. Quantum Electron OE–16, 1260 (1980); R. R. Butcher, R. A. Tennant, G. F. Erickson, S. L. Swisher, and W. L. Willis, AlP Conf. Proc. 100, 66 (1983).CrossRefGoogle Scholar
11. Jain, K., Willson, C. G., Lin, B. J., IBM J. Res. Dev. 26, 151 (1982); IEEE Electron Device Lett. EDL-3, 53 (1982); J. C. White, H. G. Craighead, R. E. Howard, L. D. Jackel, R. E. Behringer, R. W. Epworth, D. Henderson, and J. E. Sweeney, Appl. Phys. Lett. 44, 22 (1984).CrossRefGoogle Scholar
12. Brannon, J. H., J. Phys. Chem. 24, 1784 (1986).CrossRefGoogle Scholar