Skip to main content Accessibility help

Flexible Carbon-Based Nanogenerators

  • Ning-Qin Deng (a1) (a2), He Tian (a1) (a2), Qing-Tang Xue (a1) (a2), Zhe Wang (a1) (a2), Hai-Ming Zhao (a1) (a2), Shuo Ma (a1) (a2), Wen-Tian Mi (a1) (a2), Mohammad Ali Mohammad (a1) (a2), Yi Yang (a1) (a2) and Tian-Ling Ren (a1) (a2)...


Nanogenerators (NGs) have great potential to solve the problems of energy depletion and environmental pollution. Here, two types of flexible nanogenerators (FNGs) based on graphene oxide (GO) and multiwall carbon nanotubes (MW-CNTs) are presented. The peak output voltage and current of GO based FNG reached up to 2 V and 30 nA, respectively, under 15 N force at 1 Hz. Moreover, the output voltage could be improved to 34.4 V when the frequency was increased to 10 Hz. It was also found the output voltage increased from 0.1 V to 2.0 V using a released GO structure. The other FNG was made by MW-CNTs mixed with ZnO nanoparticles (NPs). Its output voltage and power reached up to 7.5 V and 18.75 mW, respectively, which is much larger than that of bare ZnO based FNG. Furthermore, a peak voltage of 30 V could be gained by stamping one’s foot on the FNG. Finally, a modified NG was fabricated using four springs and two flexible layers. As a result, the voltage and power reached up to 9 V and 27mW, respectively. These works may bring out broad applications in energy harvesting.


Corresponding author


Hide All
1. Hudson, M., Environ. Pollut., 15, 677679, (2006).
2. Ma, W. L., Yang, C. Y., Gong, X., Lee, K. and Heeger, A. J., Adv. Funct. Mater., 15, 16171622, (2005).
3. Mcgowan, J., New Sci., 139, 3033, (1993).
4. Howard-Williams, C., Schwarz, A. M. and Reid, V., Hydrobiologia, 340, 229234, (1996).
5. Lang, C., IEEE Spectrum, 40, 1313, (2003).
6. Wang, Z. L. and Song, J. H., Science, 312, 242246, (2006).
7. Wang, X. D., Song, J. H., Liu, J. and Wang, Z. L., Science, 316, 102105, (2007).
8. Huang, C. T., Song, J. H., Lee, W. F., Ding, Y., Gao, Z. Y., Hao, Y., Chen, L. J. and Wang, Z. L., J. Am. Chem. Soc., 132, 47664771, (2010).
9. , R. F., Science, 328, 304305, (2010).
10. Park, H. K., Lee, K. Y., Seo, J. S., Jeong, J. A., Kim, H. K., Choi, D. and Kim, S. W., Adv. Funct. Mater., 21, 11871193, (2011).
11. Que, R. H., Shao, M. W., Wang, S. D., Ma, D. D. D. and Lee, S. T., Nano Lett., 11, 48704873, (2011).
12. Lee, K. Y., Kumar, B., Seo, J. S., Kim, K. H., Sohn, J. I., Cha, S. N., Choi, D., Wang, Z. L. and Kim, S. W., Nano Lett., 12, 19591964, (2012).
13. Lee, M., Chen, C. Y., Wang, S., Cha, S. N., Park, Y. J., Kim, J. M., Chou, L. J. and Wang, Z. L., Adv. Mater., 24, 17591764, (2012).
14. Wu, W. W., Bai, S., Yuan, M. M., Qin, Y., Wang, Z. L. and Jing, T., ACS Nano, 6, 62316235, (2012).
15. Xu, S., Qin, Y., Xu, C., Wei, Y. G., Yang, R. S. and Wang, Z. L., Nat. Nanotechnol., 5, 366373, (2010).
16. Choi, D., Choi, M. Y., Shin, H. J., Yoon, S. M., Seo, J. S., Choi, J. Y., ... & Kim, S. W.., Nanoscale, 114, 13791384, (2009).
17. Hansen, B. J., Liu, Y., Yang, R., & Wang, Z. L, ACS nano, 4, 3647-3652, (2010).
18. Shin, H. J., Choi, W. M., Choi, D., Han, G. H., Yoon, S. M., Park, H. K., ... & Lee, Y. H., Journal of the American Chemical Society, 132, 15603-15609, (2010).
19. Becerril, H. A., Stoltenberg, R. M., Tang, M. L., Roberts, M. E., Liu, Z. F., Chen, Y. S., Kim, D. H., Lee, B. L., Lee, S. and Bao, Z. A., ACS Nano, 4, 63436352, (2010).
20. Cai, G. F., Tu, J. P., Zhang, J., Mai, Y. J., Lu, Y., Gu, C. D. and Wang, X. L., Nanoscale, 4, 57245730, (2012).
21. Tian, H., Yang, Y., Xie, D., Ren, T. L., Shu, Y., Zhou, C. J., Sun, H., Liu, X. and Zhang, C. H.,Nanoscale, 5, 890894, (2013).
22. Chen, S., Zhu, J. W., Wu, X. D., Han, Q. F. and Wang, X., ACS Nano, 4, 28222830, (2010).
23. Que, R., Shao, Q., Li, Q., Shao, M., Cai, S., Wang, S. and Lee, S. T., Angew. Chem., 124, 55145518, (2012).
24. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T. and Ruoff, R. S., Nature, 448, 457460, (2007).
25. Fan, F.-R., Tian, Z.-Q. and Lin Wang, Z.,Nano Energy, 1, 328334, (2012).


Related content

Powered by UNSILO

Flexible Carbon-Based Nanogenerators

  • Ning-Qin Deng (a1) (a2), He Tian (a1) (a2), Qing-Tang Xue (a1) (a2), Zhe Wang (a1) (a2), Hai-Ming Zhao (a1) (a2), Shuo Ma (a1) (a2), Wen-Tian Mi (a1) (a2), Mohammad Ali Mohammad (a1) (a2), Yi Yang (a1) (a2) and Tian-Ling Ren (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.