Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T03:47:36.401Z Has data issue: false hasContentIssue false

Flexibility Of The Zeolite Rho Framework: The Redistribution Of Extra Framework Cations As A Function Of Temperature.

Published online by Cambridge University Press:  15 February 2011

John B. Parise
Affiliation:
Department of Earth and Space Sciences, State University of New York, Stony Brook NY 11794–2100
Xing Liu
Affiliation:
Department of Earth and Space Sciences, State University of New York, Stony Brook NY 11794–2100
David R. Corbin
Affiliation:
Central Research Development, Du Pont Company, Experimental Station, P. O. Box 80262, Wilmington DE 19880–0262, Contribution Number 5872.
Glover A. Jones
Affiliation:
Central Research Development, Du Pont Company, Experimental Station, P. O. Box 80262, Wilmington DE 19880–0262, Contribution Number 5872.
Get access

Abstract

Upon heating Ba2+, Sr2+ and Cd2+-exchanged zeolite RHO, abrupt changes have been observed in the cubic unit cell parameters [1–3]. Calculations of the powder x-ray diffraction patterns indicate these changes result from relocation of the extra-framework cations. For Ba2+ and Sr2+-exchanged RHO, a shift from the single 8-ring (S8R) to the double 8-ring (D8R)-site is accompanied by contraction of the unit cell. However, for the Cd2+-exchanged material relocation from the S8R to the single 6-ring (S6R)-site coincides with cell expansion. Further, with relocation of Cd2+ the low temperature acentric (A) form is transformed to a centric (C) structure above 300°C. The shift of Cd2+ ion occurs over a distance of 5.7Å, the largest observed in a zeolite.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Corbin, D. R., Abrams, L., Jones, G. A., Eddy, M. M., Harrison, W. T. A., and D.Stucky, G., J. Amer. Chem. Soc. 1990, 112, 4821.Google Scholar
2. Corbin, D. R., Abrams, L., Jones, G. A., Eddy, M. M., Stucky, G. D., and Cox, D. E., J. Chem. Soc., Chem. Commun. 1989, 4243.Google Scholar
3. Parise, J. B., Liu, X. and Corbin, D. R., J. Chem. Soc., Chem. Commun. 1991, 162.CrossRefGoogle Scholar
4. Bieniok, A. and Baur, W. H., J. Solid State Chemistry 1991, 90, 173.CrossRefGoogle Scholar
5. McCusker, L. B. and Baerlocher, C., in ‘Proceedings of the Sixth International Zeolite Conference’, eds. Olson, D. and Bisio, A., Butterworths, Guildford, 1984, pp. 812822.Google Scholar
6. Parise, J. B. and Prince, E., Mater. Res. Bull. 1983, 18, 841. CrossRefGoogle Scholar
7. Parise, J. B., Gier, T. E., Corbin, D. R., and E.Cox, D., J. Phys. Chem., 1984, 88, 1635.CrossRefGoogle Scholar
8. Larson, A. C., and Dreele, R. B. Von, ‘GSAS manual’, Los Alamos Report LAUR 86748.Google Scholar
9. Baerlocher, Ch., Hepp, A. and Meier, W. M., ”DLS Manual”, Institut fur Kristallographie und Petrographie: ETH Zurich, 1977.Google Scholar
10. Shannon, R. D., Acta Cryst., 1976, A32, 751. Google Scholar
11. Parise, J. B. and Corbin, D. R., unpublished results.Google Scholar