Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T01:24:31.141Z Has data issue: false hasContentIssue false

Fi-Stm Study of Fullerenes

Published online by Cambridge University Press:  22 February 2011

Tomihiro Hashizume
Affiliation:
Institute for Materials Research (IMR), Tohoku University, Sendai 980, Japan
T. Sakurai
Affiliation:
Institute for Materials Research (IMR), Tohoku University, Sendai 980, Japan
Get access

Abstract

Adsorption of C60, C70, C60(x)C70(1-x) and Sc2C84 on the Cu(111)1×1 and Ag(l11)1×1 surfaces has been investigated by field ion-scanning tunneling microscopy (FI-STM). On the Cu(111) and Ag(111) surfaces, the fullerene molecules are mobile on the terrace at room temperature and segregate to the steps to form linear chains then two-dimensional islands with a close-packed configuration. Upon monolayer adsorption, highly ordered 4×4 commensurate phases form in the case of the C60, C70 and C60(x)C70(1−x) adsorption on the Cu(111) surface, while close-packed hexagonal multiple phases, with nearest-neighbour distance equal to that of the bulk phase, form in the case of the C60 and Sc2C84 adsorption on the Ag(111) surface. These observations imply the competition between the adsorbate-adsorbate and adsorbate-substrate interactions. The intramolecular structures observed in the STM images of the C60 and C70 molecules in the Cu(111)-4×4 phases are analyzed to determine the adsorption geometry and are interpreted as the local density of the states of the C60 and C70 molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H. R., Heath, J. R., O'Brien, S. C., Curl, R. F. and Smalley, R. E., Nature 318, 162 (1985); R. F. Curl and R. E. Smalley, Sci. American 265, 32 (1991).Google Scholar
2. Kritschmer, W., Fostiropoulos, K. and Huffman, D. R., Chem. Phys. Lett. 170, 167 (1990).Google Scholar
3. Krditschmer, W., Lamb, L. D., Fostiropoulos, K. and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
4. Hebard, A. F., Rossinsky, M. J., Haddon, R. C., Murphy, D. W., Glarum, S. H., Palstra, T. T. M., Ramirez, A. P. and Kortan, A. R., Nature 350, 600 (1991).Google Scholar
5. Binnig, G., Rohrer, H., Gerber, C. and Weibel, E., Phys. Rev. Lett. 50, 120 (1983).Google Scholar
6. Wragg, L., Chamberlain, J. E., White, H. W., Kratschmer, W., Huffman, D. R., Nature, 348, 623 (1990).Google Scholar
7. Li, Y. Z., Patrin, J. C., Chander, M., Weaver, J. H., Chibante, L. P. F., and Smalley, R. E., Science, 252, 547 (1991); Y. Z. Li, M. Chander, J. C. Patrin, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley, Science, 253, 429 (1991).Google Scholar
8. Lamb, L. D., Huffman, D. R., Workman, R. K., Howells, S., Chen, T., Sarid, D. and Ziolo, R. F., Science, 255, 1413 (1992); R. J. Wilson, G. Meijer, D. S. Bethune, R. D. Johnson, D. D. Chambliss, M. S. de Vries, H. E. Hunziker and H. R. Wendt, Nature, 348, 621 (1990).Google Scholar
9. Altman, E. I. and Colton, R. J., Surf. Sci. 279, 49 (1992).Google Scholar
10. Chen, T., Howells, S., Gallagher, M., Yi, L., Sarid, D., Lichtenberger, D. L., Nebesny, K. W. and Ray, C. D., J. Vac. Sci. Technol. B9, 2461 (1991); ibid B10, 170 (1992).Google Scholar
11. Altman, E. I. and Colton, R. J., Phys. Rev. B48, 18244 (1993).Google Scholar
12. Zhang, Y., Gao, X., and Weaver, M. J., J. Phys. Chem. 96, 510 (1992).Google Scholar
13. Gimzewski, J. K., Modesti, S. and Schlittler, R. R., Phys. Rev. Lett. 72, 1036 (1994).Google Scholar
14. Kuk, Y., Kim, D. K., Suh, Y. D., Park, K. H., Noh, H. P., Oh, S. J. and Kim, S. K.: Phys. Rev. Lett. 70, 1948 (1993).Google Scholar
15. Wang, X. D., Hashizume, T., Shinohara, H., Saito, Y., Nishina, Y., and Sakurai, T., Jpn. J. Appl. Phys. 31, L983 (1992).Google Scholar
16. Li, Y. Z., Chander, M., Patrin, J. C., Weaver, J. H., Chibante, L. P. F. and Smalley, R. E., Phys. Rev. B45, 13837 (1992); H. Xu, D. M. Chen and W. N. Creager, Phys. Rev. Lett. 70, 1850 (1993).Google Scholar
17. Hashizume, T., Wang, X. D., Shinohara, H., Saito, Y., Nishina, Y., and Sakurai, T., Jpn. J. Appl. Phys. 31, L880 (1992).Google Scholar
18. Wang, X. D., Hashizume, T., Shinohara, H., Saito, Y., Nishina, Y. and Sakurai, T., Phys. Rev. B47, 15923 (1993).Google Scholar
19. Hashizume, T., Wang, X. D., Nishina, Y., Shinohara, H., Saito, Y. and Sakurai, T., Jpn. J. Appl. Phys. Lett. 32, L132 (1993); X. D. Wang, T. Hashizume, Q. Xue, H. Shinohara, Y. Saito, Y. Nishina and T. Sakurai, Jpn. J. Appl. Phys. 32, L866 (1993); X.-D. Wang, Q. K. Xue, T. Hashizume, H. Shinohara, Y. Nishina, and T. Sakurai, Phys. Rev. B48, 15492 (1993); H. Shinohara, N. Hayashi, H. Sato, Y. Saito, X. -D. Wang, T. Hashizume and T. Sakurai, J. Phys. Chem. 97, 13438 (1993).Google Scholar
20. Sakurai, T., Hashizume, T., Kamiya, I., Hasegawa, Y., Sano, N., Pickering, H. W. and Sakai, A., Prog. Surf. Sci. 33, 3 (1990).Google Scholar
21. Kawazoe, Y., Kamiyama, H., Maruyama, Y., and Ohno, K., Jpn. J. Appl. Phys. 32, 1433 (1993).Google Scholar
22. Motai, K., Hashizume, T., Shinohara, H., Saito, Y., Pickering, H. W., Nishina, Y., and Sakurai, T., Jpn. J. Appl. Phys. 32, L450 (1993). T. Hashizume, K. Motai, X. D. Wang, H. Shinohara, Y. Saito, Y. Maruyama, K. Ohno, Y. Kawazoe, Y. Nishina, H. W. Pickering, Y. Kuk and T. Sakurai, Phys. Rev. Lett. 71, 2959 (1993).Google Scholar
23. Wang, X. -D., Hashizume, T., Yurov, V. Yu., Xue, Q. K., Shinohara, H., Kuk, Y., Nishina, Y., and Sakurai, T., to be published.Google Scholar
24. Wang, X. -D., Yamazaki, S., Hashizume, T., Shinohara, H. and Sakurai, T., to be published.Google Scholar
25. Shinohara, H., Sato, H., Saito, Y., Izuoka, A., Sugawara, T., Ito, H., Sakurai, T., and Matsuo, T., Rapid Commun. Mass Spectrom. 6, 413 (1992); Y. Saito, K. Kurosawa, H. Shinohara, S. Saito, A. Oshiyama, Y. Ando, and T. Noda, J. Phys. Soc. Jpn., 60, 2518 (1991); Y. Saito, N. Suzuki, H. Shinohara, and Y. Ando, Jpn. J. Appl. Phys., 30, 2857 (1991); H. Shinohara, H. Yamaguchi, N. Hayashi, H. Sato, M. Ohkohchi, Y. Ando and Y. Saito, J. Phys. Chem. 97, 4259 (1993).Google Scholar
26. Wertheim, G. K., Rowe, J. E., Buchanan, D. N. E., Chaban, E. E., Hebard, A. F., Kortan, A. R., Makhija, A. V., Haddon, R. C., Science, 252, 1419 (1991). J. Rowe, P. Rudolf, L. H. Tjeng, R. A. Malic, G. Meifs and C. T. Chen, Int. J. Mod. Phys. B6, 3909 (1992).Google Scholar
27. Kawazoe, Y., Kamiyama, H., Maruyama, Y., and Ohno, K., to be published.Google Scholar
28. Heiney, P. A., J. Phys. Chem. Solids, 53, 1333 (1992) and references therein.Google Scholar
29. Vaughan, G. B. M., Heiney, P. A., Fischer, J. E., Luzzi, D. E., Ricketts-Foot, D. A., McGhie, A. R., Hui, Y. -W., Smith, A. L., Cox, D. E., Romanow, W. J., Allen, B. H., Coustel, N., McGauley, J. P. Jr., and Smith, A. B. III, Science 254, 1351 (1991).Google Scholar
30. Dennis, T. J. S., Prassides, K., Roduner, E., Cristofolini, L. and DeRenzi, R., J. Phys. Chem. 97, 8553 (1993).Google Scholar