Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T21:44:29.835Z Has data issue: false hasContentIssue false

A First-Principles Study of the (111), (001) and (110) Surfaces of delta -Pu

Published online by Cambridge University Press:  26 February 2011

Haoran Gong
Affiliation:
gonghr@gmail.com, University of Texas at Arlington, Physics, United States
Asok K Ray
Affiliation:
akr@uta.edu, University of Texas at Arlington, Physics, United States
Get access

Abstract

Full-potential linearized-augmented-plane-wave (FP-LAPW) calculations for δ-Pu films up to seven layers at the ground antiferromagnetic state including spin-orbit coupling effects reveal that surface energy rapidly converges and the semi-infinite surface energy is predicted to be 1.18, 1.21, and 1.42 J/m2 for δ-Pu (111), (001), and (110) films, respectively. Density of states show that the 5f electrons of the three surfaces tend to be localized with a sequence of (111)→(001)→(110). It is also predicted that the work function of δ-Pu (110) films exhibits a quantum size effect up to seven layers, while the work functions of δ-Pu (001) and (111) films show some oscillations when the number of layers is less than five, while it becomes relatively stable when the number of layers is greater than five. In addition, the work functions are predicted to be 3.41, 3.11, and 2.99 eV for δ-Pu (111), (001), and (110) films at the ground state, respectively. Comparisons with available experimental and theoretical results in the literature show good agreement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Katz, J. J., Seaborg, G. T., and Morss, L. R., The Chemistry of the Actinide Elements (Chapman and Hall, 1986);Google Scholar
Morss, L. R. and Fuger, J., Eds. Transuranium Elements: A Half Century (American Chemical Society, Washington, D. C. 1992);Google Scholar
Katz, J. J., Morss, L. R., Fuger, J., and Edelstein, N. M., Eds. Chemistry of the Actinide and Transactinide Elements (Springer-Verlag, New York, in press);Google Scholar
Pillay, K. K. S. and Kim, K. C., Eds. Plutonium Futures – The Science, American Institute of Physics Conference Proceedings, 532 (2000);Google Scholar
Jarvinen, G. D., Ed. Plutonium Futures – The Science, American Institute of Physics Conference Proceedings, 673 (2003).Google Scholar
2. Savrasov, S. Y., Kotliar, G. and Abrahams, E., Nature 410, 793 (2001);Google Scholar
Dai, X., Savrasov, S. Y., Kotliar, G., Migliori, A., Ledbetter, H., and Abrahams, E., Science 300, 953 (2003);Google Scholar
Wong, J., Krisch, M., Farber, D. L., Occelli, F., Schwartz, A. J., Chiang, T.-C., Wall, M., Boro, C., and Xu, R., Science 301, 1078 (2003);Google Scholar
Söderlind, P. and Sadigh, B., Phys. Rev. Lett. 92, 185702 (2004);Google Scholar
Söderlind, P., Eriksson, O., Johansson, B., and Wills, J.M., Phys. Rev. B 55, 1997 (1997);Google Scholar
Sadigh, B., Söderlind, P., and Wolfer, W. G., Phys. Rev. B 68, 241101(R) (2003);Google Scholar
Heathman, S., Haire, R. G., Le Bihan, T., Lindbaum, A., Litfin, K., Meresse, Y., and Libotte, H., Phys. Rev. Lett. 85, 2961 (2000).Google Scholar
3. Ray, A. K. and Boettger, J. C., Eur. Phys. J. B 27, 429 (2002); Phys. Rev. B 70, 085418 (2004);Google Scholar
Boettger, J. C. and Ray, A. K., Int. J. Quant. Chem., 105, 564 (2005);Google Scholar
Wu, X. and Ray, A. K., Phys. Rev. B 72, 045115 (2005);Google Scholar
Huda, M. N. and Ray, A. K., Eur. Phys. J. B 40, 337 (2004); Physica B 352, 5 (2004); Eur. Phys. J. B 43, 131 (2005); Physica B 366, 95 (2005); Phys. Rev. B 72, 085101 (2005); Int. J. Quant. Chem. 105, 280 (2005);Google Scholar
Gong, H. R. and Ray, A. K., Eur. Phys. J. B, 48, 409 (2005);Google Scholar
Gao, D. and Ray, A. K., Eur. Phys. J. B, in press.Google Scholar
4. Schwarz, K., Blaha, P., and Madsen, G. K. H., Comp. Phys. Comm. 147, 71 (2002).Google Scholar
5. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
6. Gay, J. G., Smith, J. R., Richter, R., Arlinghaus, F. J., and Wagoner, R. H., J. Vac. Sci. Tech. A 2, 931 (1984);Google Scholar
Boettger, J. C., Phys. Rev. B 49, 16798 (1994).Google Scholar
7. Durakiewicz, T., Arko, A.J., Joyce, J.J., Moore, D.P., and Halas, S., Bull. Am. Phys. Soc. 46, No. 1 (2001).Google Scholar
8. Gouder, T., Havela, L., Wastin, F., and Rebizant, J., Europhys. Lett. 55, 705 (2001);Google Scholar
Havela, L., Gouder, T., Wastin, F., and Rebizant, J., Phys. Rev. B 65, 235118 (2002).Google Scholar
9. Arko, A. J., Joyce, J. J., Morales, L., Wills, J. M., Lashley, J., Wastin, F., and Rebizant, J., Phys. Rev. B 62, 1773 (2000).Google Scholar