Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-27T23:31:40.985Z Has data issue: false hasContentIssue false

First-Principles Study of Interfacial Reaction Atomic Process at Silicon Oxidation

Published online by Cambridge University Press:  10 February 2011

H. Kageshima
Affiliation:
NTT Basic Research Laboratories, Atsugi, Kanagawa 243–01, Japan, kages@aecl.ntt.co.jp
K. Shiraishi
Affiliation:
NTT Basic Research Laboratories, Atsugi, Kanagawa 243–01, Japan, kages@aecl.ntt.co.jp
Get access

Abstract

A theoretical atomic process model of the interfacial oxidation reaction on a silicon substrate is proposed based on first-principles calculation. In the calculation, H-terminated Si(100) surfaces are used for the first approximation of the silicon-oxide/silicon interfaces. The proposed atomic process model is based on the plausible assumption that the remaining stress in the oxidized region is kept at a minimum and does not break the grown Si-O-Si network when the oxidation proceeds. As a natural consequence, Si atoms are emitted from the interface as the oxidation proceeds to release the stress due to substitution of Si-Si bonds by Si-O-Si bonds. This emission is consistent with well-known experiments of oxidation-induced stacking faults and oxidation-enhanced diffusion. Our model presents a microscopic approach for understanding the silicon oxidation process, whereas the widely accepted Deal-Grove model presents a macroscopic one.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thomas, D.J.D., Phys. Stat. Sol. 3, 2261 (1963).Google Scholar
2. Ravi, K.V. and Varker, C.J., J. Appl. Phys. 45, 263 (1974);Google Scholar
Hu, S.M., Appl. Phys. Lett. 27, 165 (1975).Google Scholar
3. Mizuo, S. and Higuchi, H., Jpn. J. Appl. Phys. 20, 739 (1981);Google Scholar
Tan, T.Y. and Gösele, U., Appl. Phys. A37, 1 (1985);Google Scholar
Gösele, U. and Tan, T.Y., in Impurity Diffusion and Gettering in Silicon (Material Research Society, 1985) p. 105.Google Scholar
4. Kageshima, H. and Shiraishi, K., Appl. Surf. Sci. (in press).Google Scholar
5. Vanderbilt, D., Phys. Rev. B41, 7892 (1990);Google Scholar
Laasonen, K., Pasquarello, A., Car, R., Lee, C. and Vanderbilt, D., Phys. Rev. B47, 10142 (1993);Google Scholar
Yamauchi, J., Tsukada, M., Watanabe, S. and Sugino, O., Surf. Sci. 341, L1037 (1995).Google Scholar
6. Kageshima, H., Surf. Sci. 357/358, 312 (1996);Google Scholar
Kageshima, H. and Shiraishi, K., Surf. Sci., 380, 61 (1997); Phys. Rev. B (in press).Google Scholar
7. Perdew, J.P. and Zunger, A., Phys. Rev. B23, 5048 (1981).Google Scholar
8. Bylander, D.M., Kleinman, L. and Lee, S., Phys. Rev. B42, 1394 (1990);Google Scholar
Teter, M.P., Payne, M.C. and Allan, D.C., Phys. Rev. B40, 12255 (1989);Google Scholar
Sugino, O. and Oshiyama, A., Phys. Rev. Lett. 68, 1858(1992).Google Scholar
9. Northrup, J. E., Phys. Rev. B44, 1419 (1991).Google Scholar
10. Miyamoto, Y. and Oshiyama, A., Phys. Rev. B41, 12680 (1990).Google Scholar
11. Pajot, B., in Oxygen in Silicon, edited by Shimura, F. (Semiconductors and Semimetals, Vol. 42, Academic Press, San Diego, 1994) p. 191.Google Scholar
12. Car, R., Kelly, P. J., Oshiyama, A. and Pantelides, S. T., Phys. Rev. Lett. 52, 1814 (1984).Google Scholar
13. Cahill, D. G. and Avouris, Ph., Appl. Phys. Lett. 60, 326 (1992);Google Scholar
Ono, Y., Tabe, M. and Kageshima, H., Phys. Rev. B48, 14291 (1993).Google Scholar
14. Liu, H.I., Biegelsen, D.K., Johnson, N.M., Ponce, F.A. and Pease, R.F.W., J. Vac. Sci. Technol. B11, 2532 (1993).Google Scholar
15. Deal, B.E. and Grove, A.S., J. Appl. Phys. 36, 3770 (1965).Google Scholar
16. Chadi, D.J., Phys. Rev. Lett. 77, 861 (1996).Google Scholar