Skip to main content Accessibility help

First-principles investigations on the thermoelectric properties of Bi2Te3 doped with Se

  • Liwen F. Wan (a1) and Scott P. Beckman (a1)


In this work, the thermoelectric properties of Se-doped Bi2Te3 are examined using first-principles density functional theory and semi-classical Boltzmann transport theory. Placing a single Se atom on the 3a Wyckoff position lowers the unit cell energy by approximately 3.6 eV, compared to the 6c Te position. The electronic structure of Bi2Te3 has minor changes upon Se doping. At carrier concentration of 1019 cm-3, the optimal thermopower, S, is obtained as 207 and 220 μV/K for n-type and p-type doping, respectively. Unlike the thermopower, the power factor, S 2 σ/τ, is highly anisotropic for the in-plane and cross-plane conduction. At carrier concentrations of 1019 cm-3, the best power factor is predicted to be around 1.05 and 1.4×1011 W/m·s·K2 for n-type and p-type doping, respectively.



Hide All
1. Rosi, F. D., Solid-State Electron. 11, 833848 (1968).
2. Rosi, F. D., Hockings, E. F. and Lindenblad, N. E., RCA Rev. 22, 82121 (1961).
3. Wood, C., Rep. Prog. Phys. 51, 459539 (1988).
4. Snyder, G. J. and Toberer, E. S., Nature Mater. 7, 105 (2008).
5. Wright, D. A., Nature 181, 834 (1958).
6. Wan, C., Wang, Y., Wang, N., Norimatsu, W., Kusunoki, M., and Koumoto, K., Sci. Technol. Adv. Mater. 11, 044306 (2010).
7. Hashibon, A. and Elsässer, C., Phys. Rev. B 84, 144117 (2011).
8. Termentzidis, K., Pokropyvnyy, O., Woda, M., Xiong, S., Chumakov, Y., Cortona, P. and Volz, S., J. Appl. Phys. 113, 013506 (2013).
9. Qiu, B., Sun, L. and Ruan, X., Phys. Rev. B 83, 035312 (2011).
10. Teweldebrhan, D., Goyal, V. and Balandin, A. A., Nano Lett. 10, 12091218 (2010).
11. Venkatasubramanian, R., Phys. Rev. B 61, 30913097 (2000).
12. Venkatasubramanian, R., Colpitts, T., O’Quinn, B., Liu, S., El-Masry, N. and Lamvik, M., Appl. Phys. Lett. 75, 1104 (1999).
13. Venkatasubramanian, R., Silvola, E., Colpitts, T. and O’Quinn, B., Nature 413, 597602 (2001).
14. Kohn, W. and Sham, L. J., Phys. Rev. 140(A), 1133 (1965).
15. Martin, R. M., Electronic Structure: Basis Theory and Practical Methods (Cambridge University Press, New York, 2004) p. 119.
16. Ziman, J. M., Electrons and Phonons (Oxford University Press, New York, 2001) p. 257.
17. Madsen, G. K. H. and Singh, D. J., Comput. Phys. Commun. 175, 6771 (2006).
18. Singh, D. J. and Nordström, L., Planewaves, Pseudopotentials and the LAPW Method, 2nd ed. (Springer, New York, 2006) p. 43.
19. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., and Luitz, J., WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (K. Schwarz Technical University, Wien, Austria, 2001) p. 1.
20. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).
21. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).
22. Wyckoff, R. W. G., Crystal Structures (John Wiley and sons, New York, 1964) p. 10.
23. Wang, S., Tan, G., Xie, W., Zheng, G., Li, H., Yang, J. and Tang, X., J. Mater. Chem. 22, 20943 (2012).
24. Hinsche, N. F., Yavorsky, B. Y., Gradhand, M., Czerner, M., Winkler, M., König, J., Böttner, H., Mertig, I. and Zahn, P., Phys. Rev. B 86, 085323 (2012).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed