Skip to main content Accessibility help
×
Home

First-principles Investigations of Point Defect Behavior and Elastic Properties of TiNi Based Alloys

  • Jian-min Lu (a1), Qing-miao Hu (a2) and Rui Yang (a3)

Abstract

First-principles calculations by the use of a plane-wave pseudopotential method are performed to investigate intrinsic point defect behavior in TiNi. The results show that TiNi is an antisite type intermetallic compound. The calculated interaction energies between the point defects demonstrate that Ti antisites are attractive to each other whereas Ni antisites are mutually repulsive. The attraction between Ti antisites indicates that excess Ti in TiNi may agglomerate so that a Ti-rich phase can easily precipitate. The repulsion between Ni antisites implies that the excess Ni is of certain solubility in TiNi. This result explains well the asymmetric feature of TiNi field on the binary phase diagram. In order to understand the correlation between the composition dependent elastic modulus and martensitic transformation (MT) temperature, the elastic moduli critical to MT, i.e., c′ and c 44, are calculated as a function of the composition of the off-stoichiometric TiNi and a series of ternary TiNi-X alloys, by the use of exact muffin-tin orbital method in combination with coherent potential approximation. It turns out that, generally speaking, the early transition metal (TM) alloying elements in the periodic table increase c′ but decrease c 44; the middle ones increase both c′ and c 44, whereas the late ones decrease c′ but increase c 44. An examination of the theoretical composition dependent elastic modulus and the experimental MT temperature shows that the MT temperature is more sensitive to the variation of c 44 than to that of c′.

Copyright

References

Hide All
1. Otsuka, K. and Ren, X., Prog. Mater. Sci. 50, 511 (2005).
2. Kartha, S., Krumhansl, J. A., Sethna, J. P. and Wickham, L. K., Phys. Rev. B 52, 803 (1995).
3. Ren, X. and Otsuka, K., Scripta Metall. 38, 1669 (1998).
4. Ren, X., Taniwaki, K., Otsuka, K., et al. Philos. Mag. A 79, 31 (1999).
5. Ren, X. and Otsuka, K., Mater. Sci. Forum 327-328, 429 (2000).
6. Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).
7. Mayer, J., Elsasser, C. and Fahnle, M., Phys. Status Solidi B 191, 283 (1995).
8. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. and Joannopoulus, J. D., Rev. Mod. Phys. 64, 1045 (1992).
9. Segall, M. D., Lindan, P. L. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J. and Payne, M. C., J. Phys.: Condens. Matter 14, 2717 (2002).
10. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).
11. Vitos, L., Abrikosov, I. A. and Johansson, B., Phys. Rev. Lett. 87, 156401 (2001).
12. Soven, S., Phys. Rev. 156, 809 (1967).
13. Györffy, B. L., Phys. Rev. B 5, 2382 (1972).
14. Ye, Y. Y., Chan, C. T. and Ho, K. M., Phys. Rev. B 56, 3678 (1997).
15. Huang, X., Bungaro, C., Godlevsky, V. and Rabe, K. M., Phys. Rev. B 65, 014108 (2001).
16. Mercier, O., Melton, K. N., Gremaud, G. and Hagi, J., J. Appl. Phys. 51, 1833 (1980).
17. Khachin, V. N., Muslov, S. A., Pushin, V. G. and Chumlyakov, Y. I., Sov. Phys. Dokl. 32, 606 (1980).
18. Brill, T. M., Mittlebach, S., Assmus, W., Mullner, M. and Luthi, B., J. Phys.: Condens. Matter 3, 9621 (1991).
19. Hanlon, J. E., Butler, S. R. and Wasilewski, R. J., Trans. Metall. Soc. AIME 239, 1323 (1967).
20. Wasilewski, R. J., Butler, S. R., Hanlon, J. E. and Worden, D., Metall. Trans. 2, 229 (1971).
21. Lu, J. M., Hu, Q. M., Wang, L., Li, Y. J., Xu, D. S. and Yang, R., Phys. Rev. B 75, 094108 (2007).
22. Lu, J. M., Hu, Q. M. and Yang, R., Acta Mater. 56, 4913 (2008).
23. Hu, Q. M., Yang, R., Lu, J. M., Wang, L., Johansson, B. and Vitos, L., Phys. Rev. B 76, 224201 (2007).
24. Echelmeyer, K. H., Script Metall. 10, 667 (1976).
25. Edmonds, K. R. and Hwang, C. M., Script Metall. 20, 733 (1986).
26. Xu, H. B., Jiang, C. B., Gong, S. K. and Feng, G., Mater. Sci. Eng. A 281, 234 (2000).
27. Hosoda, H., Hanada, S., Inoue, K., Fukui, T., Mishima, Y. and Suzuki, T., Intermetallics 6, 291 (1998).
28. Lin, H. C., Lin, K. M., Chang, S. K. and Lin, C. S., J. Alloy Comp. 284, 213 (1999).
29. Nam, T. H., Saburi, T. and Shimizu, K., Mater. Trans. JIM 31, 959 (1990).
30. Kornilov, I. I., Kachur, Y. V. and Belousov, O. K., Fizika. Metall. 32, 420 (1971).
31. Mayazaki, S., Otsuka, K. and Suzuki, Y., Scr. Metall. 15, 287 (1981).
32. Melton, K.N. and Mercier, O., Acta Metall. 29, 393 (1981).
33. Mayazaki, S. and Otsuka, K., Metall. Trans. 17, 53 (1986).
34. Nishida, M., Wayman, C.M. and Honma, T., Metall. Trans. A 17, 1505 (1986).
35. Wu, S. K. and Wayman, C. M., Script Metall. 21, 83 (1987); Metallography 20, 359 (1987).
36. Honsoda, H., Tsuji, M., Mimura, M., Takahashi, Y., Wakashima, K. and Ymabe-Mitarai, Y., Mat. Res. Soc. Symp. Proc. 753, BB5.51.1 (2003).
37. Feng, Z. W., Gao, B. D., Wang, J. B., Qian, D. F. and Liu, Y. X., Mater. Sci. Forum 394-395, 365 (2002).
38. Hsieh, S. F. and Wu, S. K., Mater. Charact. 151, 41 (1998).

Keywords

First-principles Investigations of Point Defect Behavior and Elastic Properties of TiNi Based Alloys

  • Jian-min Lu (a1), Qing-miao Hu (a2) and Rui Yang (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed