Skip to main content Accessibility help
×
Home

First-Principles Investigation of Structural, Elastic and Electronic Properties of Lanthanide Titanate Oxides Ln2TiO5

  • Hui Niu (a1), Huiyang Gou (a1), Rodney C. Ewing (a2) and Jie Lian (a1)

Abstract

Systematic first-principles calculations based on density functional theory were performed on a wide range of Ln2TiO5 compositions (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy and Y) in order to understand the correlation between structural, elastic and electronic properties. A complete set of elastic parameters including elastic constants, Hill’s bulk moduli, shear moduli, Young’s moduli and Poisson’s ratio, were calculated. All Ln2TiO5 are ductile in nature, and analysis of densities of states and charge densities suggests that the oxide bonds are highly ionic.

Copyright

References

Hide All
1. Syamala, K. V., Panneerselvam, G., Subramanian, G. G. S. and Antony, M. P., Thermochimica Acta 475(12), 7679 (2008).
2. Panneerselvam, G., Krishnan, R. V., Antony, M. P., Nagarajan, K., Vasudevan, T. and Rao, P. R. V., J. Nucl. Mater. 327(23), 220225 (2004).
3. Ray, W. E., Nuclear Engineering and Design 17(3), 377–& (1971).
4. Odette, G. R., Alinger, M. J. and Wirth, B. D., Ann. Rev. Mater. Res. 38, 471503 (2008).
5. Zinkle, S. J., Fusion Eng. Des. 74(14), 3140 (2005).
6. Jiang, Y., Smith, J. R. and Odette, G. R., Acta Materialia 58(5), 15361543 (2010).
7. Kresse, G. and Furthmuller, J., Physical Review B 54(16), 1116911186 (1996).
8. Kresse, G. and Hafner, J., Physical Review B 47(1), 558561 (1993).
9. Kresse, G. and Joubert, D., Physical Review B 59(3), 17581775 (1999).
10. Perdew, J. P. and Wang, Y., Physical Review B 45(23), 1324413249 (1992).
11. Shepelev, Y. F. and Petrova, M. A., Inorganic Materials 44(12), 13541361 (2008).
12. Petrova, M. A. and Grebenshchikov, R. G., Glass Physics and Chemistry 34(5), 603607 (2008).
13. Mumme, W. G. and Wadsley, A. D., Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry B 24, 1327–& (1968).
14. Preuss, A. and Gruehn, R., J. Solid State Chem. 110(2), 363369 (1994).
15. Zhang, F. X., Wang, J. W., Lang, M., Zhang, J. M. and Ewing, R. C., J. Solid State Chem. 183(11), 26362643 (2010).
16. Aughterson, R. D., Lumpkin, G. R., Smith, K. L., Thorogood, G. J. and Whittle, K. R., Mater. Res. Soc. Symp. Proc., 1107 (2008).
17. Simmons, G. and Wang, H., Cambridge (MA): MIT Press (1971).
18. Pugh, S. F., Philosophical Magazine 45(367), 823843 (1954).
19. Arzt, E. and Wilkinson, D. S., Acta Metallurgica 34(10), 18931898 (1986).
20. Trachenko, K., Pruneda, J. M., Artacho, E. and Dove, M. T., Physical Review B 71(18) (2005).
21. Nemoshkalenko, V. V., Borisenko, S. V., Uvarov, V. N., Yasesko, A. N., Vakhney, A. G., Senkevich, A. I., Bondarenko, T. N. and Borisenko, V. D., Physical Review B 63(7) (2001).
22. Xiao, H. Y., Zu, X. T., Gao, F. and Weber, W. J., Journal of Applied Physics 104(7) (2008).
23. Becke, A. D. and Edgecombe, K. E., Journal of Chemical Physics 92(9), 53975403 (1990).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed