Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-20T18:32:53.416Z Has data issue: false hasContentIssue false

Fine Structure of the 3.42 eV Emission Band in GaN

Published online by Cambridge University Press:  21 February 2011

S. Fischer
Affiliation:
Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
C. Wetzel
Affiliation:
Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
W. Walukiewicz
Affiliation:
Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
E.E. Haller
Affiliation:
Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
Get access

Abstract

A luminescence band centered around 3.42 eV is commonly observed in GaN. Its appearance has been tentatively assigned to an oxygen donor level. Stimulated laser activity has also been reported at this energy. We present a study of this band in GaN grown by high temperature vapor phase epitaxy (HTVPE). The high quality of this material, with an excitonic line width as narrow as 3 meV, allows us to distingish four different peak positions of this luminescence band. They appear at 3.4066, 3.4121, 3.4186, and 3.4238 eV (T = 6 K). Within the experimental error the lines exhibit an equidistant spacing of 6 meV. They show a pressure behavior similar to shallow levels described by effective mass theory. We discuss our results in the context of incorporation of oxygen and structural defects in GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Matsumoto, T. and Aoki, M., Jap. J. Appl. Phys. 13, 1804 (1974).Google Scholar
2 Ogino, T. and Aoki, M., Jap. J. Appl. Phys. 18, 1049 (1979).Google Scholar
3 Smith, M., Chen, G.D., Lin, J.Y., Jiang, H.X., Salvador, A., Sverdlov, B.N., Botchkarev, A., and Morkoc, H., Appl. Phys. Lett. 66, 3474 (1995).Google Scholar
4 Dai, R., Fu, S., Xie, J., Fan, G., Hu, G., Schrey, H., and Klingshirn, C., J. Phys. C 15, 393 (1982).Google Scholar
5 Ogino, T. and Aoki, M., Jap. J. Appl. Phys. 19, 2395 (1980).Google Scholar
6 Dingle, R., Shell, D.D., Stokowski, S.E., and Ilegems, M., Phys. Rev. B 4, 1211 (1971).Google Scholar
7 Grimmeis, H.G. and Monemar, B., J. Appl. Phys. 41, 4054 (1970).Google Scholar
8 Chung, B.-C. and Gershenzon, M., J. Appl. Phys. 72, 651 (1992).Google Scholar
9 Yang, X.H., Schmidt, T.J., Shan, W., Song, J.J., and Goldenberg, B., Appl. Phys. Lett. 66, 1 (1995).Google Scholar
10 Amano, H., Asashi, I., Kito, M., and Akasaki, I., J. Luminescence 48&49, 889 (1991).Google Scholar
11 Fischer, S., Wetzel, C., Bourret, E., Hansen, W.L., and Haller, E.E., presented at the 1995 MRS Spring Meeting, San Francisco, CA, 1995 (unpublished).Google Scholar
12 Mao, H.K., Xu, J., and Bell, P.M., J. Geophys. Research 91, 673 (1986).Google Scholar
13 Fischer, S., Wetzel, C., Haller, E.E., and Meyer, B.K., Appl. Phys. Lett. 67, 1298 (1995).Google Scholar
14 Naniwae, K., Itoh, S., Amano, H., Itoh, K., Hiramatsu, K., and Akasaki, I., J. Crystal Growth 99, 381 (1990).Google Scholar
15 Monemar, B., Phys. Rev. B 10, 676 (1974).Google Scholar
16 Wetzel, C., Walukiewicz, W., Haller, E.E., Amano, H., and Akasaki, I. in Defect and impurity engineered semiconductors and devices, edited by Ashok, A., Chevallier, J., Akasaki, I., and Johnson, N.M. (Mater. Res. Soc. Proc. 378, Pittsburgh, PA, 1995).Google Scholar
17 Meyer, B.K., Volm, D., Graber, A., Alt, H.C., Detchprohm, T., Amano, H., and Akasaki, I., Solid State Commun. 95, 597 (1995).Google Scholar
18 Liliental-Weber, Z., private communication. Google Scholar
19 Seifert, W., Franzheld, R., Butter, E., Sobotta, H., and Riede, V., Cryst. Res. & Technol. 18, 383 (1983).Google Scholar