Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T16:21:48.974Z Has data issue: false hasContentIssue false

Film Properties of Low-Density and Ultra-Low-Dielectric-Constant Material

Published online by Cambridge University Press:  10 February 2011

Ryo Muraguchi
Affiliation:
Catalysts & Chemicals Ind. Co., Ltd., 13–2 Kitaminato Wakamatsu Kitakyushu, 807–0027, JAPAN.
Miki Egami
Affiliation:
Catalysts & Chemicals Ind. Co., Ltd., 13–2 Kitaminato Wakamatsu Kitakyushu, 807–0027, JAPAN.
Hiroki Arao
Affiliation:
Catalysts & Chemicals Ind. Co., Ltd., 13–2 Kitaminato Wakamatsu Kitakyushu, 807–0027, JAPAN.
Atsushi Tounai
Affiliation:
Catalysts & Chemicals Ind. Co., Ltd., 13–2 Kitaminato Wakamatsu Kitakyushu, 807–0027, JAPAN.
Akira Nakashima
Affiliation:
Catalysts & Chemicals Ind. Co., Ltd., 13–2 Kitaminato Wakamatsu Kitakyushu, 807–0027, JAPAN.
Michio Komatsu
Affiliation:
Catalysts & Chemicals Ind. Co., Ltd., 13–2 Kitaminato Wakamatsu Kitakyushu, 807–0027, JAPAN.
Get access

Abstract

We studied the effect of pore diameter on the film properties of low-density porous material with special interest in the pore diameter range below 5nm. A novel low-density material, Interpenetrated SOG (IPS), was designed to realize such porous character. It is composed of a pyrolic template, which is an organic olygomer, and framework, made from SOG polymer and silica sol, forming an interpenetrated structure. Thermal decomposition of the organic component successfully resulted in films with pore diameter range below 5nm. It is found that the dielectric constant and the pore diameter depended on the density and the film strength was affected by the average pore diameter. Practically, films with the average pore size below 5nm possessed dielectric constants as low as 2.2–2.0 and sufficient strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. The National Technology Roadmap for Semiconductors. Technology Needs. Published by Semiconductor Industry Association in 1997.Google Scholar
2. Cook, Robert F., Liniger, Eric G., Klaus, David P., Simonyi, Eva E. and Cohen, Stephan A. in PROPERTIES DEVELOPMENT DURING CURING OF LOW DIELECTRIC-CONSTANT SPIN-ON GLASSES, edited by Chaing, Chien, HO, Paul S., Lu, Toh-Ming and Wetzel, Jeffrey T. (Mater.Res.Soc.Proc.511, San Francisco, CA, 1998) pp. 3338.Google Scholar
3. Kim, Sung Mog, Yoon, Do Y., Nguyen, Cattien V., Han, Jie, and Jaffe, Richard L. in EXPERIMENTAL AND THEORETICAL STUDY OF STRUCTUREDIELECTRIC PROPERTY RELATIONSHIPS FOR POLYSILSESQUIOXANES, edited by Chaing, Chien, HO, Paul S., Lu, Toh-Ming and Wetzel, Jeffrey T. (Mater.Res.Soc.Proc.511, San Francisco, CA, 1998) pp. 3947.Google Scholar
4. Shaffer, E. O. II, Mills, M. E., Hawn, D., Gestel, M. Van, Knorr, A., Gundlach, H., Kumar, K., Kaloyeros, A.E. and Geer, R. E. in ADHESION ENERGY MEASUREMENTS OF MULTILAYER LOW-K DIELECTRIC MATERIALS FOR ULSI APPLICATIONS, edited by Chaing, Chien, HO, Paul S., Lu, Toh-Ming and Wetzel, Jeffrey T. (Mater.Res.Soc.Proc.511, San Francisco, CA 1998) pp. 133138.Google Scholar
5. Mountsier, Thomas W., Samuels, John A., and Swope, Richard S. in Integration Studies of Plasma Deposited Fluorinated Amorphous Carbon, edited by Chaing, Chien, Ho, Paul S., Lu, Toh-Ming and Wetzel, Jeffrey T. (Mater.Res.Soc.Proc.511, San Francisco, CA, 1998) pp. 259264.Google Scholar
6. Nitta, S., Jain, A., Pisupatti, V., Gill, W. N., Wayner, P. C. Jr., and Plawsky, J. L. in FABRICATION AND CHARACTERIZATION OF SPIN-ON SILICA XEROGEL FILMS, edited by Chaing, Chien, Ho, Paul S., Lu, Toh-Ming and Wetzel, Jeffrey T. Wetzel (Mater.Res.Soc.Proc.511, San Francisco, CA, 1998) pp. 99104.Google Scholar
7. CHANGMING JIN, SCOTT LIST, EDEN ZIELINSKI in POROUS SILICA XEROGEL PROCESSING AND INTEGRATION FOR ULSI APPLICATIONS, edited by Chaing, Chien, Ho, Paul S., Lu, Toh-Ming and Wetzel, Jeffrey T. Wetzel (Mater.Res.Soc.Proc.511, San Francisco, CA, 1998) pp. 213222.Google Scholar
8. Ramos, T., Rhoderick, K., Roth, R., Brungardt, L., Wallace, S., Drage, J., Dunne, J., Endisch, D., Katsanes, R., Vienes, N., and Smith, D. M. in NANOPOROUS SILICA FOR LOW K DIELECTRICS, edited by Chaing, Chien, Ho, Paul S., Lu, Toh-Ming and Wetzel, Jeffrey T. Wetzel (Mater.Res.Soc.Proc.511, San Francisco, CA, 1998) pp. 105110.Google Scholar
9. Remenar, Julius F., Hawker, Craig J., Hedrick, James L., Kim, Sung Mong, Miller, Robert D., Nguyen, Cattien, Trollsas, Mikael, and Yoon, Do Y. in TEMPLATING NANOPORES INTO POLY(METHYLSILSESQUIOXANE): NEW LOWDIELECTRIC COATINGS SUITABLE FOR MICROELECTRONIC APPLICATIONS, edited by Chaing, Chien, Ho, Paul S., Lu, Toh-Ming and Wetzel, Jeffrey T. Wetzel (Mater.Res.Soc.Proc.511, San Francisco, CA, 1998) pp. 6974.Google Scholar
10. Nakashima, A., Muraguchi, R., Komatsu, M., Ohkura, Y., Miyajima, M., Harada, H., Fukuyama, S., Proc. 4th Intl. DUMIC Conf., p.2530, Fab. 16–17, 1998, Santa Clara, CA.Google Scholar